| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) |
| 2 |
|
fz1ssfz0 |
⊢ ( 1 ... ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝑊 ) ) |
| 3 |
2
|
sseli |
⊢ ( 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 5 |
|
elfznn |
⊢ ( 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℕ ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝐿 ∈ ℕ ) |
| 7 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝐿 ) ↔ 𝐿 ∈ ℕ ) |
| 8 |
6 7
|
sylibr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 0 ∈ ( 0 ..^ 𝐿 ) ) |
| 9 |
|
pfxfv |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 0 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
| 10 |
1 4 8 9
|
syl3anc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |