| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnexthasheq.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlksnexthasheq.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | simp1 | ⊢ ( ( ( 𝑥  prefix  𝑁 )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 )  →  ( 𝑥  prefix  𝑁 )  =  𝑦 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑥  ∈  Word  𝑉  →  ( ( ( 𝑥  prefix  𝑁 )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 )  →  ( 𝑥  prefix  𝑁 )  =  𝑦 ) ) | 
						
							| 5 | 4 | ss2rabi | ⊢ { 𝑥  ∈  Word  𝑉  ∣  ( ( 𝑥  prefix  𝑁 )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) }  ⊆  { 𝑥  ∈  Word  𝑉  ∣  ( 𝑥  prefix  𝑁 )  =  𝑦 } | 
						
							| 6 | 5 | rgenw | ⊢ ∀ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) { 𝑥  ∈  Word  𝑉  ∣  ( ( 𝑥  prefix  𝑁 )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) }  ⊆  { 𝑥  ∈  Word  𝑉  ∣  ( 𝑥  prefix  𝑁 )  =  𝑦 } | 
						
							| 7 |  | disjwrdpfx | ⊢ Disj  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) { 𝑥  ∈  Word  𝑉  ∣  ( 𝑥  prefix  𝑁 )  =  𝑦 } | 
						
							| 8 |  | disjss2 | ⊢ ( ∀ 𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) { 𝑥  ∈  Word  𝑉  ∣  ( ( 𝑥  prefix  𝑁 )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) }  ⊆  { 𝑥  ∈  Word  𝑉  ∣  ( 𝑥  prefix  𝑁 )  =  𝑦 }  →  ( Disj  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) { 𝑥  ∈  Word  𝑉  ∣  ( 𝑥  prefix  𝑁 )  =  𝑦 }  →  Disj  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) { 𝑥  ∈  Word  𝑉  ∣  ( ( 𝑥  prefix  𝑁 )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) } ) ) | 
						
							| 9 | 6 7 8 | mp2 | ⊢ Disj  𝑦  ∈  ( 𝑁  WWalksN  𝐺 ) { 𝑥  ∈  Word  𝑉  ∣  ( ( 𝑥  prefix  𝑁 )  =  𝑦  ∧  ( 𝑦 ‘ 0 )  =  𝑃  ∧  { ( lastS ‘ 𝑦 ) ,  ( lastS ‘ 𝑥 ) }  ∈  𝐸 ) } |