| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | rusgrnumwwlk.l |  |-  L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) | 
						
							| 3 |  | simp2 |  |-  ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> P e. V ) | 
						
							| 4 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 5 | 4 | 3ad2ant3 |  |-  ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> N e. NN0 ) | 
						
							| 6 | 1 2 | rusgrnumwwlklem |  |-  ( ( P e. V /\ N e. NN0 ) -> ( P L N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) ) | 
						
							| 7 | 3 5 6 | syl2anc |  |-  ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> ( P L N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) ) | 
						
							| 8 |  | rusgrusgr |  |-  ( G RegUSGraph 0 -> G e. USGraph ) | 
						
							| 9 |  | usgr0edg0rusgr |  |-  ( G e. USGraph -> ( G RegUSGraph 0 <-> ( Edg ` G ) = (/) ) ) | 
						
							| 10 | 9 | biimpcd |  |-  ( G RegUSGraph 0 -> ( G e. USGraph -> ( Edg ` G ) = (/) ) ) | 
						
							| 11 | 8 10 | mpd |  |-  ( G RegUSGraph 0 -> ( Edg ` G ) = (/) ) | 
						
							| 12 |  | 0enwwlksnge1 |  |-  ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> ( N WWalksN G ) = (/) ) | 
						
							| 13 | 11 12 | sylan |  |-  ( ( G RegUSGraph 0 /\ N e. NN ) -> ( N WWalksN G ) = (/) ) | 
						
							| 14 |  | eleq2 |  |-  ( ( N WWalksN G ) = (/) -> ( w e. ( N WWalksN G ) <-> w e. (/) ) ) | 
						
							| 15 |  | noel |  |-  -. w e. (/) | 
						
							| 16 | 15 | pm2.21i |  |-  ( w e. (/) -> -. ( w ` 0 ) = P ) | 
						
							| 17 | 14 16 | biimtrdi |  |-  ( ( N WWalksN G ) = (/) -> ( w e. ( N WWalksN G ) -> -. ( w ` 0 ) = P ) ) | 
						
							| 18 | 13 17 | syl |  |-  ( ( G RegUSGraph 0 /\ N e. NN ) -> ( w e. ( N WWalksN G ) -> -. ( w ` 0 ) = P ) ) | 
						
							| 19 | 18 | 3adant2 |  |-  ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> ( w e. ( N WWalksN G ) -> -. ( w ` 0 ) = P ) ) | 
						
							| 20 | 19 | ralrimiv |  |-  ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> A. w e. ( N WWalksN G ) -. ( w ` 0 ) = P ) | 
						
							| 21 |  | rabeq0 |  |-  ( { w e. ( N WWalksN G ) | ( w ` 0 ) = P } = (/) <-> A. w e. ( N WWalksN G ) -. ( w ` 0 ) = P ) | 
						
							| 22 | 20 21 | sylibr |  |-  ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> { w e. ( N WWalksN G ) | ( w ` 0 ) = P } = (/) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) = ( # ` (/) ) ) | 
						
							| 24 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 25 | 23 24 | eqtrdi |  |-  ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) = 0 ) | 
						
							| 26 | 7 25 | eqtrd |  |-  ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> ( P L N ) = 0 ) |