| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rusgrnumwwlk.v |
|- V = ( Vtx ` G ) |
| 2 |
|
rusgrnumwwlk.l |
|- L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) |
| 3 |
|
simp2 |
|- ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> P e. V ) |
| 4 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 5 |
4
|
3ad2ant3 |
|- ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> N e. NN0 ) |
| 6 |
1 2
|
rusgrnumwwlklem |
|- ( ( P e. V /\ N e. NN0 ) -> ( P L N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) ) |
| 7 |
3 5 6
|
syl2anc |
|- ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> ( P L N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) ) |
| 8 |
|
rusgrusgr |
|- ( G RegUSGraph 0 -> G e. USGraph ) |
| 9 |
|
usgr0edg0rusgr |
|- ( G e. USGraph -> ( G RegUSGraph 0 <-> ( Edg ` G ) = (/) ) ) |
| 10 |
9
|
biimpcd |
|- ( G RegUSGraph 0 -> ( G e. USGraph -> ( Edg ` G ) = (/) ) ) |
| 11 |
8 10
|
mpd |
|- ( G RegUSGraph 0 -> ( Edg ` G ) = (/) ) |
| 12 |
|
0enwwlksnge1 |
|- ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> ( N WWalksN G ) = (/) ) |
| 13 |
11 12
|
sylan |
|- ( ( G RegUSGraph 0 /\ N e. NN ) -> ( N WWalksN G ) = (/) ) |
| 14 |
|
eleq2 |
|- ( ( N WWalksN G ) = (/) -> ( w e. ( N WWalksN G ) <-> w e. (/) ) ) |
| 15 |
|
noel |
|- -. w e. (/) |
| 16 |
15
|
pm2.21i |
|- ( w e. (/) -> -. ( w ` 0 ) = P ) |
| 17 |
14 16
|
biimtrdi |
|- ( ( N WWalksN G ) = (/) -> ( w e. ( N WWalksN G ) -> -. ( w ` 0 ) = P ) ) |
| 18 |
13 17
|
syl |
|- ( ( G RegUSGraph 0 /\ N e. NN ) -> ( w e. ( N WWalksN G ) -> -. ( w ` 0 ) = P ) ) |
| 19 |
18
|
3adant2 |
|- ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> ( w e. ( N WWalksN G ) -> -. ( w ` 0 ) = P ) ) |
| 20 |
19
|
ralrimiv |
|- ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> A. w e. ( N WWalksN G ) -. ( w ` 0 ) = P ) |
| 21 |
|
rabeq0 |
|- ( { w e. ( N WWalksN G ) | ( w ` 0 ) = P } = (/) <-> A. w e. ( N WWalksN G ) -. ( w ` 0 ) = P ) |
| 22 |
20 21
|
sylibr |
|- ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> { w e. ( N WWalksN G ) | ( w ` 0 ) = P } = (/) ) |
| 23 |
22
|
fveq2d |
|- ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) = ( # ` (/) ) ) |
| 24 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 25 |
23 24
|
eqtrdi |
|- ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) = 0 ) |
| 26 |
7 25
|
eqtrd |
|- ( ( G RegUSGraph 0 /\ P e. V /\ N e. NN ) -> ( P L N ) = 0 ) |