| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 2 |  | wwlksn |  |-  ( N e. NN0 -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) | 
						
							| 3 | 1 2 | syl |  |-  ( N e. NN -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) | 
						
							| 5 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 6 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 7 | 5 6 | iswwlks |  |-  ( w e. ( WWalks ` G ) <-> ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 8 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 9 |  | pncan1 |  |-  ( N e. CC -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 10 | 8 9 | syl |  |-  ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 11 |  | id |  |-  ( N e. NN -> N e. NN ) | 
						
							| 12 | 10 11 | eqeltrd |  |-  ( N e. NN -> ( ( N + 1 ) - 1 ) e. NN ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> ( ( N + 1 ) - 1 ) e. NN ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( ( N + 1 ) - 1 ) e. NN ) | 
						
							| 15 |  | oveq1 |  |-  ( ( # ` w ) = ( N + 1 ) -> ( ( # ` w ) - 1 ) = ( ( N + 1 ) - 1 ) ) | 
						
							| 16 | 15 | eleq1d |  |-  ( ( # ` w ) = ( N + 1 ) -> ( ( ( # ` w ) - 1 ) e. NN <-> ( ( N + 1 ) - 1 ) e. NN ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( ( ( # ` w ) - 1 ) e. NN <-> ( ( N + 1 ) - 1 ) e. NN ) ) | 
						
							| 18 | 14 17 | mpbird |  |-  ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( ( # ` w ) - 1 ) e. NN ) | 
						
							| 19 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( ( # ` w ) - 1 ) ) <-> ( ( # ` w ) - 1 ) e. NN ) | 
						
							| 20 | 18 19 | sylibr |  |-  ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> 0 e. ( 0 ..^ ( ( # ` w ) - 1 ) ) ) | 
						
							| 21 |  | fveq2 |  |-  ( i = 0 -> ( w ` i ) = ( w ` 0 ) ) | 
						
							| 22 |  | fv0p1e1 |  |-  ( i = 0 -> ( w ` ( i + 1 ) ) = ( w ` 1 ) ) | 
						
							| 23 | 21 22 | preq12d |  |-  ( i = 0 -> { ( w ` i ) , ( w ` ( i + 1 ) ) } = { ( w ` 0 ) , ( w ` 1 ) } ) | 
						
							| 24 | 23 | eleq1d |  |-  ( i = 0 -> ( { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) /\ i = 0 ) -> ( { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 26 | 20 25 | rspcdv |  |-  ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 27 |  | eleq2 |  |-  ( ( Edg ` G ) = (/) -> ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. (/) ) ) | 
						
							| 28 |  | noel |  |-  -. { ( w ` 0 ) , ( w ` 1 ) } e. (/) | 
						
							| 29 | 28 | pm2.21i |  |-  ( { ( w ` 0 ) , ( w ` 1 ) } e. (/) -> -. ( # ` w ) = ( N + 1 ) ) | 
						
							| 30 | 27 29 | biimtrdi |  |-  ( ( Edg ` G ) = (/) -> ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) -> -. ( # ` w ) = ( N + 1 ) ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) -> -. ( # ` w ) = ( N + 1 ) ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) -> -. ( # ` w ) = ( N + 1 ) ) ) | 
						
							| 33 | 26 32 | syldc |  |-  ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> -. ( # ` w ) = ( N + 1 ) ) ) | 
						
							| 34 | 33 | 3ad2ant3 |  |-  ( ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> -. ( # ` w ) = ( N + 1 ) ) ) | 
						
							| 35 | 34 | com12 |  |-  ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( ( w =/= (/) /\ w e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> -. ( # ` w ) = ( N + 1 ) ) ) | 
						
							| 36 | 7 35 | biimtrid |  |-  ( ( ( # ` w ) = ( N + 1 ) /\ ( ( Edg ` G ) = (/) /\ N e. NN ) ) -> ( w e. ( WWalks ` G ) -> -. ( # ` w ) = ( N + 1 ) ) ) | 
						
							| 37 | 36 | expimpd |  |-  ( ( # ` w ) = ( N + 1 ) -> ( ( ( ( Edg ` G ) = (/) /\ N e. NN ) /\ w e. ( WWalks ` G ) ) -> -. ( # ` w ) = ( N + 1 ) ) ) | 
						
							| 38 |  | ax-1 |  |-  ( -. ( # ` w ) = ( N + 1 ) -> ( ( ( ( Edg ` G ) = (/) /\ N e. NN ) /\ w e. ( WWalks ` G ) ) -> -. ( # ` w ) = ( N + 1 ) ) ) | 
						
							| 39 | 37 38 | pm2.61i |  |-  ( ( ( ( Edg ` G ) = (/) /\ N e. NN ) /\ w e. ( WWalks ` G ) ) -> -. ( # ` w ) = ( N + 1 ) ) | 
						
							| 40 | 39 | ralrimiva |  |-  ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> A. w e. ( WWalks ` G ) -. ( # ` w ) = ( N + 1 ) ) | 
						
							| 41 |  | rabeq0 |  |-  ( { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } = (/) <-> A. w e. ( WWalks ` G ) -. ( # ` w ) = ( N + 1 ) ) | 
						
							| 42 | 40 41 | sylibr |  |-  ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } = (/) ) | 
						
							| 43 | 4 42 | eqtrd |  |-  ( ( ( Edg ` G ) = (/) /\ N e. NN ) -> ( N WWalksN G ) = (/) ) |