| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 2 |  | wwlksn | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  WWalksN  𝐺 )  =  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) } ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  WWalksN  𝐺 )  =  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) } ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  WWalksN  𝐺 )  =  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) } ) | 
						
							| 5 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 6 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 7 | 5 6 | iswwlks | ⊢ ( 𝑤  ∈  ( WWalks ‘ 𝐺 )  ↔  ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 8 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 9 |  | pncan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 11 |  | id | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ ) | 
						
							| 12 | 10 11 | eqeltrd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  −  1 )  ∈  ℕ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑁  +  1 )  −  1 )  ∈  ℕ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ ) )  →  ( ( 𝑁  +  1 )  −  1 )  ∈  ℕ ) | 
						
							| 15 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  →  ( ( ♯ ‘ 𝑤 )  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  →  ( ( ( ♯ ‘ 𝑤 )  −  1 )  ∈  ℕ  ↔  ( ( 𝑁  +  1 )  −  1 )  ∈  ℕ ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ ) )  →  ( ( ( ♯ ‘ 𝑤 )  −  1 )  ∈  ℕ  ↔  ( ( 𝑁  +  1 )  −  1 )  ∈  ℕ ) ) | 
						
							| 18 | 14 17 | mpbird | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ ) )  →  ( ( ♯ ‘ 𝑤 )  −  1 )  ∈  ℕ ) | 
						
							| 19 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) )  ↔  ( ( ♯ ‘ 𝑤 )  −  1 )  ∈  ℕ ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ ) )  →  0  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑤 ‘ 𝑖 )  =  ( 𝑤 ‘ 0 ) ) | 
						
							| 22 |  | fv0p1e1 | ⊢ ( 𝑖  =  0  →  ( 𝑤 ‘ ( 𝑖  +  1 ) )  =  ( 𝑤 ‘ 1 ) ) | 
						
							| 23 | 21 22 | preq12d | ⊢ ( 𝑖  =  0  →  { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  =  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) } ) | 
						
							| 24 | 23 | eleq1d | ⊢ ( 𝑖  =  0  →  ( { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ ) )  ∧  𝑖  =  0 )  →  ( { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 26 | 20 25 | rspcdv | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 27 |  | eleq2 | ⊢ ( ( Edg ‘ 𝐺 )  =  ∅  →  ( { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ∅ ) ) | 
						
							| 28 |  | noel | ⊢ ¬  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ∅ | 
						
							| 29 | 28 | pm2.21i | ⊢ ( { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ∅  →  ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) | 
						
							| 30 | 27 29 | biimtrdi | ⊢ ( ( Edg ‘ 𝐺 )  =  ∅  →  ( { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  →  ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ )  →  ( { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  →  ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ ) )  →  ( { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  →  ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 33 | 26 32 | syldc | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ ) )  →  ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 34 | 33 | 3ad2ant3 | ⊢ ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ ) )  →  ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 35 | 34 | com12 | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ ) )  →  ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 36 | 7 35 | biimtrid | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  ∧  ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑤  ∈  ( WWalks ‘ 𝐺 )  →  ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 37 | 36 | expimpd | ⊢ ( ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  →  ( ( ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ )  ∧  𝑤  ∈  ( WWalks ‘ 𝐺 ) )  →  ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 38 |  | ax-1 | ⊢ ( ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 )  →  ( ( ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ )  ∧  𝑤  ∈  ( WWalks ‘ 𝐺 ) )  →  ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) ) | 
						
							| 39 | 37 38 | pm2.61i | ⊢ ( ( ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ )  ∧  𝑤  ∈  ( WWalks ‘ 𝐺 ) )  →  ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) | 
						
							| 40 | 39 | ralrimiva | ⊢ ( ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ )  →  ∀ 𝑤  ∈  ( WWalks ‘ 𝐺 ) ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) | 
						
							| 41 |  | rabeq0 | ⊢ ( { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) }  =  ∅  ↔  ∀ 𝑤  ∈  ( WWalks ‘ 𝐺 ) ¬  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) ) | 
						
							| 42 | 40 41 | sylibr | ⊢ ( ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ )  →  { 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  ( 𝑁  +  1 ) }  =  ∅ ) | 
						
							| 43 | 4 42 | eqtrd | ⊢ ( ( ( Edg ‘ 𝐺 )  =  ∅  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  WWalksN  𝐺 )  =  ∅ ) |