| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnnn0 |  | 
						
							| 2 |  | wwlksn |  | 
						
							| 3 | 1 2 | syl |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 5 6 | iswwlks |  | 
						
							| 8 |  | nncn |  | 
						
							| 9 |  | pncan1 |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 |  | id |  | 
						
							| 12 | 10 11 | eqeltrd |  | 
						
							| 13 | 12 | adantl |  | 
						
							| 14 | 13 | adantl |  | 
						
							| 15 |  | oveq1 |  | 
						
							| 16 | 15 | eleq1d |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 14 17 | mpbird |  | 
						
							| 19 |  | lbfzo0 |  | 
						
							| 20 | 18 19 | sylibr |  | 
						
							| 21 |  | fveq2 |  | 
						
							| 22 |  | fv0p1e1 |  | 
						
							| 23 | 21 22 | preq12d |  | 
						
							| 24 | 23 | eleq1d |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 | 20 25 | rspcdv |  | 
						
							| 27 |  | eleq2 |  | 
						
							| 28 |  | noel |  | 
						
							| 29 | 28 | pm2.21i |  | 
						
							| 30 | 27 29 | biimtrdi |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 | 26 32 | syldc |  | 
						
							| 34 | 33 | 3ad2ant3 |  | 
						
							| 35 | 34 | com12 |  | 
						
							| 36 | 7 35 | biimtrid |  | 
						
							| 37 | 36 | expimpd |  | 
						
							| 38 |  | ax-1 |  | 
						
							| 39 | 37 38 | pm2.61i |  | 
						
							| 40 | 39 | ralrimiva |  | 
						
							| 41 |  | rabeq0 |  | 
						
							| 42 | 40 41 | sylibr |  | 
						
							| 43 | 4 42 | eqtrd |  |