| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rusgrnumwwlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
rusgrnumwwlk.l |
⊢ 𝐿 = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) |
| 3 |
|
simp2 |
⊢ ( ( 𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ 𝑉 ) |
| 4 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 6 |
1 2
|
rusgrnumwwlklem |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 𝐿 𝑁 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) ) |
| 7 |
3 5 6
|
syl2anc |
⊢ ( ( 𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑃 𝐿 𝑁 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) ) |
| 8 |
|
rusgrusgr |
⊢ ( 𝐺 RegUSGraph 0 → 𝐺 ∈ USGraph ) |
| 9 |
|
usgr0edg0rusgr |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 RegUSGraph 0 ↔ ( Edg ‘ 𝐺 ) = ∅ ) ) |
| 10 |
9
|
biimpcd |
⊢ ( 𝐺 RegUSGraph 0 → ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ∅ ) ) |
| 11 |
8 10
|
mpd |
⊢ ( 𝐺 RegUSGraph 0 → ( Edg ‘ 𝐺 ) = ∅ ) |
| 12 |
|
0enwwlksnge1 |
⊢ ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 WWalksN 𝐺 ) = ∅ ) |
| 13 |
11 12
|
sylan |
⊢ ( ( 𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ ) → ( 𝑁 WWalksN 𝐺 ) = ∅ ) |
| 14 |
|
eleq2 |
⊢ ( ( 𝑁 WWalksN 𝐺 ) = ∅ → ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ 𝑤 ∈ ∅ ) ) |
| 15 |
|
noel |
⊢ ¬ 𝑤 ∈ ∅ |
| 16 |
15
|
pm2.21i |
⊢ ( 𝑤 ∈ ∅ → ¬ ( 𝑤 ‘ 0 ) = 𝑃 ) |
| 17 |
14 16
|
biimtrdi |
⊢ ( ( 𝑁 WWalksN 𝐺 ) = ∅ → ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ¬ ( 𝑤 ‘ 0 ) = 𝑃 ) ) |
| 18 |
13 17
|
syl |
⊢ ( ( 𝐺 RegUSGraph 0 ∧ 𝑁 ∈ ℕ ) → ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ¬ ( 𝑤 ‘ 0 ) = 𝑃 ) ) |
| 19 |
18
|
3adant2 |
⊢ ( ( 𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ¬ ( 𝑤 ‘ 0 ) = 𝑃 ) ) |
| 20 |
19
|
ralrimiv |
⊢ ( ( 𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ∀ 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ¬ ( 𝑤 ‘ 0 ) = 𝑃 ) |
| 21 |
|
rabeq0 |
⊢ ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } = ∅ ↔ ∀ 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ¬ ( 𝑤 ‘ 0 ) = 𝑃 ) |
| 22 |
20 21
|
sylibr |
⊢ ( ( 𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } = ∅ ) |
| 23 |
22
|
fveq2d |
⊢ ( ( 𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( ♯ ‘ ∅ ) ) |
| 24 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 25 |
23 24
|
eqtrdi |
⊢ ( ( 𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = 0 ) |
| 26 |
7 25
|
eqtrd |
⊢ ( ( 𝐺 RegUSGraph 0 ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑃 𝐿 𝑁 ) = 0 ) |