| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | numclwwlk.q | ⊢ 𝑄  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ  ↦  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 ) } ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  WWalksN  𝐺 )  =  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  ( 𝑛  WWalksN  𝐺 )  =  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 5 |  | eqeq2 | ⊢ ( 𝑣  =  𝑋  →  ( ( 𝑤 ‘ 0 )  =  𝑣  ↔  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 6 |  | neeq2 | ⊢ ( 𝑣  =  𝑋  →  ( ( lastS ‘ 𝑤 )  ≠  𝑣  ↔  ( lastS ‘ 𝑤 )  ≠  𝑋 ) ) | 
						
							| 7 | 5 6 | anbi12d | ⊢ ( 𝑣  =  𝑋  →  ( ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 )  ↔  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 )  ↔  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) ) ) | 
						
							| 9 | 4 8 | rabeqbidv | ⊢ ( ( 𝑣  =  𝑋  ∧  𝑛  =  𝑁 )  →  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑣  ∧  ( lastS ‘ 𝑤 )  ≠  𝑣 ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) | 
						
							| 10 |  | ovex | ⊢ ( 𝑁  WWalksN  𝐺 )  ∈  V | 
						
							| 11 | 10 | rabex | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) }  ∈  V | 
						
							| 12 | 9 2 11 | ovmpoa | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ )  →  ( 𝑋 𝑄 𝑁 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } ) |