| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | numclwwlk.q |  |-  Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) | 
						
							| 3 |  | oveq1 |  |-  ( n = N -> ( n WWalksN G ) = ( N WWalksN G ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( v = X /\ n = N ) -> ( n WWalksN G ) = ( N WWalksN G ) ) | 
						
							| 5 |  | eqeq2 |  |-  ( v = X -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = X ) ) | 
						
							| 6 |  | neeq2 |  |-  ( v = X -> ( ( lastS ` w ) =/= v <-> ( lastS ` w ) =/= X ) ) | 
						
							| 7 | 5 6 | anbi12d |  |-  ( v = X -> ( ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( v = X /\ n = N ) -> ( ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) ) ) | 
						
							| 9 | 4 8 | rabeqbidv |  |-  ( ( v = X /\ n = N ) -> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) | 
						
							| 10 |  | ovex |  |-  ( N WWalksN G ) e. _V | 
						
							| 11 | 10 | rabex |  |-  { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } e. _V | 
						
							| 12 | 9 2 11 | ovmpoa |  |-  ( ( X e. V /\ N e. NN ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) |