| Step | Hyp | Ref | Expression | 
						
							| 1 |  | numclwwlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | numclwwlk.q |  |-  Q = ( v e. V , n e. NN |-> { w e. ( n WWalksN G ) | ( ( w ` 0 ) = v /\ ( lastS ` w ) =/= v ) } ) | 
						
							| 3 | 1 2 | numclwwlkovq |  |-  ( ( X e. V /\ N e. NN ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( X Q N ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) | 
						
							| 5 | 4 | fveq2d |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` ( X Q N ) ) = ( # ` { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) ) | 
						
							| 6 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 7 |  | eqid |  |-  { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } | 
						
							| 8 |  | eqid |  |-  ( X ( N WWalksNOn G ) X ) = ( X ( N WWalksNOn G ) X ) | 
						
							| 9 | 7 8 1 | clwwlknclwwlkdifnum |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) = ( ( K ^ N ) - ( # ` ( X ( N WWalksNOn G ) X ) ) ) ) | 
						
							| 10 | 6 9 | sylanr2 |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) = ( ( K ^ N ) - ( # ` ( X ( N WWalksNOn G ) X ) ) ) ) | 
						
							| 11 | 1 | iswwlksnon |  |-  ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } | 
						
							| 12 |  | wwlknlsw |  |-  ( w e. ( N WWalksN G ) -> ( w ` N ) = ( lastS ` w ) ) | 
						
							| 13 |  | eqcom |  |-  ( ( w ` 0 ) = X <-> X = ( w ` 0 ) ) | 
						
							| 14 | 13 | biimpi |  |-  ( ( w ` 0 ) = X -> X = ( w ` 0 ) ) | 
						
							| 15 | 12 14 | eqeqan12d |  |-  ( ( w e. ( N WWalksN G ) /\ ( w ` 0 ) = X ) -> ( ( w ` N ) = X <-> ( lastS ` w ) = ( w ` 0 ) ) ) | 
						
							| 16 | 15 | pm5.32da |  |-  ( w e. ( N WWalksN G ) -> ( ( ( w ` 0 ) = X /\ ( w ` N ) = X ) <-> ( ( w ` 0 ) = X /\ ( lastS ` w ) = ( w ` 0 ) ) ) ) | 
						
							| 17 | 16 | biancomd |  |-  ( w e. ( N WWalksN G ) -> ( ( ( w ` 0 ) = X /\ ( w ` N ) = X ) <-> ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) ) ) | 
						
							| 18 | 17 | rabbiia |  |-  { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` N ) = X ) } = { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } | 
						
							| 19 | 11 18 | eqtri |  |-  ( X ( N WWalksNOn G ) X ) = { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } | 
						
							| 20 | 19 | fveq2i |  |-  ( # ` ( X ( N WWalksNOn G ) X ) ) = ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) | 
						
							| 21 | 20 | a1i |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` ( X ( N WWalksNOn G ) X ) ) = ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( ( K ^ N ) - ( # ` ( X ( N WWalksNOn G ) X ) ) ) = ( ( K ^ N ) - ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) ) ) | 
						
							| 23 | 10 22 | eqtrd |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` { w e. ( N WWalksN G ) | ( ( w ` 0 ) = X /\ ( lastS ` w ) =/= X ) } ) = ( ( K ^ N ) - ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) ) ) | 
						
							| 24 |  | ovex |  |-  ( N WWalksN G ) e. _V | 
						
							| 25 | 24 | rabex |  |-  { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } e. _V | 
						
							| 26 |  | clwwlkvbij |  |-  ( ( X e. V /\ N e. NN ) -> E. f f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> E. f f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) | 
						
							| 28 |  | hasheqf1oi |  |-  ( { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } e. _V -> ( E. f f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) -> ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) = ( # ` ( X ( ClWWalksNOn ` G ) N ) ) ) ) | 
						
							| 29 | 25 27 28 | mpsyl |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) = ( # ` ( X ( ClWWalksNOn ` G ) N ) ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( ( K ^ N ) - ( # ` { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } ) ) = ( ( K ^ N ) - ( # ` ( X ( ClWWalksNOn ` G ) N ) ) ) ) | 
						
							| 31 | 5 23 30 | 3eqtrd |  |-  ( ( ( G RegUSGraph K /\ V e. Fin ) /\ ( X e. V /\ N e. NN ) ) -> ( # ` ( X Q N ) ) = ( ( K ^ N ) - ( # ` ( X ( ClWWalksNOn ` G ) N ) ) ) ) |