| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovex |  |-  ( N WWalksN G ) e. _V | 
						
							| 2 | 1 | mptrabex |  |-  ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) e. _V | 
						
							| 3 | 2 | resex |  |-  ( ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) |` { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } ) e. _V | 
						
							| 4 |  | eqid |  |-  ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) = ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) | 
						
							| 5 |  | eqid |  |-  { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } = { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | 
						
							| 6 | 5 4 | clwwlkf1o |  |-  ( N e. NN -> ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) : { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } -1-1-onto-> ( N ClWWalksN G ) ) | 
						
							| 7 |  | fveq1 |  |-  ( y = ( w prefix N ) -> ( y ` 0 ) = ( ( w prefix N ) ` 0 ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( y = ( w prefix N ) -> ( ( y ` 0 ) = X <-> ( ( w prefix N ) ` 0 ) = X ) ) | 
						
							| 9 | 8 | 3ad2ant3 |  |-  ( ( N e. NN /\ w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } /\ y = ( w prefix N ) ) -> ( ( y ` 0 ) = X <-> ( ( w prefix N ) ` 0 ) = X ) ) | 
						
							| 10 |  | fveq2 |  |-  ( x = w -> ( lastS ` x ) = ( lastS ` w ) ) | 
						
							| 11 |  | fveq1 |  |-  ( x = w -> ( x ` 0 ) = ( w ` 0 ) ) | 
						
							| 12 | 10 11 | eqeq12d |  |-  ( x = w -> ( ( lastS ` x ) = ( x ` 0 ) <-> ( lastS ` w ) = ( w ` 0 ) ) ) | 
						
							| 13 | 12 | elrab |  |-  ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } <-> ( w e. ( N WWalksN G ) /\ ( lastS ` w ) = ( w ` 0 ) ) ) | 
						
							| 14 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 15 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 16 | 14 15 | wwlknp |  |-  ( w e. ( N WWalksN G ) -> ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 17 |  | simpll |  |-  ( ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = ( N + 1 ) ) /\ N e. NN ) -> w e. Word ( Vtx ` G ) ) | 
						
							| 18 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 19 |  | uzid |  |-  ( N e. ZZ -> N e. ( ZZ>= ` N ) ) | 
						
							| 20 |  | peano2uz |  |-  ( N e. ( ZZ>= ` N ) -> ( N + 1 ) e. ( ZZ>= ` N ) ) | 
						
							| 21 | 18 19 20 | 3syl |  |-  ( N e. NN -> ( N + 1 ) e. ( ZZ>= ` N ) ) | 
						
							| 22 |  | elfz1end |  |-  ( N e. NN <-> N e. ( 1 ... N ) ) | 
						
							| 23 | 22 | biimpi |  |-  ( N e. NN -> N e. ( 1 ... N ) ) | 
						
							| 24 |  | fzss2 |  |-  ( ( N + 1 ) e. ( ZZ>= ` N ) -> ( 1 ... N ) C_ ( 1 ... ( N + 1 ) ) ) | 
						
							| 25 | 24 | sselda |  |-  ( ( ( N + 1 ) e. ( ZZ>= ` N ) /\ N e. ( 1 ... N ) ) -> N e. ( 1 ... ( N + 1 ) ) ) | 
						
							| 26 | 21 23 25 | syl2anc |  |-  ( N e. NN -> N e. ( 1 ... ( N + 1 ) ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = ( N + 1 ) ) /\ N e. NN ) -> N e. ( 1 ... ( N + 1 ) ) ) | 
						
							| 28 |  | oveq2 |  |-  ( ( # ` w ) = ( N + 1 ) -> ( 1 ... ( # ` w ) ) = ( 1 ... ( N + 1 ) ) ) | 
						
							| 29 | 28 | eleq2d |  |-  ( ( # ` w ) = ( N + 1 ) -> ( N e. ( 1 ... ( # ` w ) ) <-> N e. ( 1 ... ( N + 1 ) ) ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = ( N + 1 ) ) -> ( N e. ( 1 ... ( # ` w ) ) <-> N e. ( 1 ... ( N + 1 ) ) ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = ( N + 1 ) ) /\ N e. NN ) -> ( N e. ( 1 ... ( # ` w ) ) <-> N e. ( 1 ... ( N + 1 ) ) ) ) | 
						
							| 32 | 27 31 | mpbird |  |-  ( ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = ( N + 1 ) ) /\ N e. NN ) -> N e. ( 1 ... ( # ` w ) ) ) | 
						
							| 33 | 17 32 | jca |  |-  ( ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = ( N + 1 ) ) /\ N e. NN ) -> ( w e. Word ( Vtx ` G ) /\ N e. ( 1 ... ( # ` w ) ) ) ) | 
						
							| 34 | 33 | ex |  |-  ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = ( N + 1 ) ) -> ( N e. NN -> ( w e. Word ( Vtx ` G ) /\ N e. ( 1 ... ( # ` w ) ) ) ) ) | 
						
							| 35 | 34 | 3adant3 |  |-  ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = ( N + 1 ) /\ A. i e. ( 0 ..^ N ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( N e. NN -> ( w e. Word ( Vtx ` G ) /\ N e. ( 1 ... ( # ` w ) ) ) ) ) | 
						
							| 36 | 16 35 | syl |  |-  ( w e. ( N WWalksN G ) -> ( N e. NN -> ( w e. Word ( Vtx ` G ) /\ N e. ( 1 ... ( # ` w ) ) ) ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( w e. ( N WWalksN G ) /\ ( lastS ` w ) = ( w ` 0 ) ) -> ( N e. NN -> ( w e. Word ( Vtx ` G ) /\ N e. ( 1 ... ( # ` w ) ) ) ) ) | 
						
							| 38 | 13 37 | sylbi |  |-  ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } -> ( N e. NN -> ( w e. Word ( Vtx ` G ) /\ N e. ( 1 ... ( # ` w ) ) ) ) ) | 
						
							| 39 | 38 | impcom |  |-  ( ( N e. NN /\ w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } ) -> ( w e. Word ( Vtx ` G ) /\ N e. ( 1 ... ( # ` w ) ) ) ) | 
						
							| 40 |  | pfxfv0 |  |-  ( ( w e. Word ( Vtx ` G ) /\ N e. ( 1 ... ( # ` w ) ) ) -> ( ( w prefix N ) ` 0 ) = ( w ` 0 ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( N e. NN /\ w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } ) -> ( ( w prefix N ) ` 0 ) = ( w ` 0 ) ) | 
						
							| 42 | 41 | eqeq1d |  |-  ( ( N e. NN /\ w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } ) -> ( ( ( w prefix N ) ` 0 ) = X <-> ( w ` 0 ) = X ) ) | 
						
							| 43 | 42 | 3adant3 |  |-  ( ( N e. NN /\ w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } /\ y = ( w prefix N ) ) -> ( ( ( w prefix N ) ` 0 ) = X <-> ( w ` 0 ) = X ) ) | 
						
							| 44 | 9 43 | bitrd |  |-  ( ( N e. NN /\ w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } /\ y = ( w prefix N ) ) -> ( ( y ` 0 ) = X <-> ( w ` 0 ) = X ) ) | 
						
							| 45 | 4 6 44 | f1oresrab |  |-  ( N e. NN -> ( ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) |` { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } ) : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> { y e. ( N ClWWalksN G ) | ( y ` 0 ) = X } ) | 
						
							| 46 | 45 | adantl |  |-  ( ( X e. V /\ N e. NN ) -> ( ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) |` { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } ) : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> { y e. ( N ClWWalksN G ) | ( y ` 0 ) = X } ) | 
						
							| 47 |  | clwwlknon |  |-  ( X ( ClWWalksNOn ` G ) N ) = { y e. ( N ClWWalksN G ) | ( y ` 0 ) = X } | 
						
							| 48 | 47 | a1i |  |-  ( ( X e. V /\ N e. NN ) -> ( X ( ClWWalksNOn ` G ) N ) = { y e. ( N ClWWalksN G ) | ( y ` 0 ) = X } ) | 
						
							| 49 | 48 | f1oeq3d |  |-  ( ( X e. V /\ N e. NN ) -> ( ( ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) |` { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } ) : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) <-> ( ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) |` { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } ) : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> { y e. ( N ClWWalksN G ) | ( y ` 0 ) = X } ) ) | 
						
							| 50 | 46 49 | mpbird |  |-  ( ( X e. V /\ N e. NN ) -> ( ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) |` { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } ) : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) | 
						
							| 51 |  | f1oeq1 |  |-  ( f = ( ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) |` { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } ) -> ( f : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) <-> ( ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) |` { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } ) : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) ) | 
						
							| 52 | 51 | spcegv |  |-  ( ( ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) |` { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } ) e. _V -> ( ( ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } |-> ( w prefix N ) ) |` { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } ) : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) -> E. f f : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) ) | 
						
							| 53 | 3 50 52 | mpsyl |  |-  ( ( X e. V /\ N e. NN ) -> E. f f : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) | 
						
							| 54 |  | df-rab |  |-  { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } = { w | ( w e. ( N WWalksN G ) /\ ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) ) } | 
						
							| 55 |  | anass |  |-  ( ( ( w e. ( N WWalksN G ) /\ ( lastS ` w ) = ( w ` 0 ) ) /\ ( w ` 0 ) = X ) <-> ( w e. ( N WWalksN G ) /\ ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) ) ) | 
						
							| 56 | 55 | bicomi |  |-  ( ( w e. ( N WWalksN G ) /\ ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) ) <-> ( ( w e. ( N WWalksN G ) /\ ( lastS ` w ) = ( w ` 0 ) ) /\ ( w ` 0 ) = X ) ) | 
						
							| 57 | 56 | abbii |  |-  { w | ( w e. ( N WWalksN G ) /\ ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) ) } = { w | ( ( w e. ( N WWalksN G ) /\ ( lastS ` w ) = ( w ` 0 ) ) /\ ( w ` 0 ) = X ) } | 
						
							| 58 | 13 | bicomi |  |-  ( ( w e. ( N WWalksN G ) /\ ( lastS ` w ) = ( w ` 0 ) ) <-> w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } ) | 
						
							| 59 | 58 | anbi1i |  |-  ( ( ( w e. ( N WWalksN G ) /\ ( lastS ` w ) = ( w ` 0 ) ) /\ ( w ` 0 ) = X ) <-> ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } /\ ( w ` 0 ) = X ) ) | 
						
							| 60 | 59 | abbii |  |-  { w | ( ( w e. ( N WWalksN G ) /\ ( lastS ` w ) = ( w ` 0 ) ) /\ ( w ` 0 ) = X ) } = { w | ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } /\ ( w ` 0 ) = X ) } | 
						
							| 61 |  | df-rab |  |-  { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } = { w | ( w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } /\ ( w ` 0 ) = X ) } | 
						
							| 62 | 60 61 | eqtr4i |  |-  { w | ( ( w e. ( N WWalksN G ) /\ ( lastS ` w ) = ( w ` 0 ) ) /\ ( w ` 0 ) = X ) } = { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } | 
						
							| 63 | 54 57 62 | 3eqtri |  |-  { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } = { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } | 
						
							| 64 |  | f1oeq2 |  |-  ( { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } = { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -> ( f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) <-> f : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) ) | 
						
							| 65 | 63 64 | mp1i |  |-  ( ( X e. V /\ N e. NN ) -> ( f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) <-> f : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) ) | 
						
							| 66 | 65 | exbidv |  |-  ( ( X e. V /\ N e. NN ) -> ( E. f f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) <-> E. f f : { w e. { x e. ( N WWalksN G ) | ( lastS ` x ) = ( x ` 0 ) } | ( w ` 0 ) = X } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) ) | 
						
							| 67 | 53 66 | mpbird |  |-  ( ( X e. V /\ N e. NN ) -> E. f f : { w e. ( N WWalksN G ) | ( ( lastS ` w ) = ( w ` 0 ) /\ ( w ` 0 ) = X ) } -1-1-onto-> ( X ( ClWWalksNOn ` G ) N ) ) |