| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq2 |  |-  ( v = X -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = X ) ) | 
						
							| 2 | 1 | rabbidv |  |-  ( v = X -> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } = { w e. ( n ClWWalksN G ) | ( w ` 0 ) = X } ) | 
						
							| 3 |  | oveq1 |  |-  ( n = N -> ( n ClWWalksN G ) = ( N ClWWalksN G ) ) | 
						
							| 4 | 3 | rabeqdv |  |-  ( n = N -> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = X } = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } ) | 
						
							| 5 |  | clwwlknonmpo |  |-  ( ClWWalksNOn ` G ) = ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) | 
						
							| 6 |  | ovex |  |-  ( N ClWWalksN G ) e. _V | 
						
							| 7 | 6 | rabex |  |-  { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } e. _V | 
						
							| 8 | 2 4 5 7 | ovmpo |  |-  ( ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } ) | 
						
							| 9 | 5 | mpondm0 |  |-  ( -. ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> ( X ( ClWWalksNOn ` G ) N ) = (/) ) | 
						
							| 10 |  | isclwwlkn |  |-  ( w e. ( N ClWWalksN G ) <-> ( w e. ( ClWWalks ` G ) /\ ( # ` w ) = N ) ) | 
						
							| 11 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 12 | 11 | clwwlkbp |  |-  ( w e. ( ClWWalks ` G ) -> ( G e. _V /\ w e. Word ( Vtx ` G ) /\ w =/= (/) ) ) | 
						
							| 13 |  | fstwrdne |  |-  ( ( w e. Word ( Vtx ` G ) /\ w =/= (/) ) -> ( w ` 0 ) e. ( Vtx ` G ) ) | 
						
							| 14 | 13 | 3adant1 |  |-  ( ( G e. _V /\ w e. Word ( Vtx ` G ) /\ w =/= (/) ) -> ( w ` 0 ) e. ( Vtx ` G ) ) | 
						
							| 15 | 12 14 | syl |  |-  ( w e. ( ClWWalks ` G ) -> ( w ` 0 ) e. ( Vtx ` G ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( w e. ( ClWWalks ` G ) /\ ( # ` w ) = N ) -> ( w ` 0 ) e. ( Vtx ` G ) ) | 
						
							| 17 | 10 16 | sylbi |  |-  ( w e. ( N ClWWalksN G ) -> ( w ` 0 ) e. ( Vtx ` G ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) -> ( w ` 0 ) e. ( Vtx ` G ) ) | 
						
							| 19 |  | eleq1 |  |-  ( ( w ` 0 ) = X -> ( ( w ` 0 ) e. ( Vtx ` G ) <-> X e. ( Vtx ` G ) ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) -> ( ( w ` 0 ) e. ( Vtx ` G ) <-> X e. ( Vtx ` G ) ) ) | 
						
							| 21 | 18 20 | mpbid |  |-  ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) -> X e. ( Vtx ` G ) ) | 
						
							| 22 |  | clwwlknnn |  |-  ( w e. ( N ClWWalksN G ) -> N e. NN ) | 
						
							| 23 | 22 | nnnn0d |  |-  ( w e. ( N ClWWalksN G ) -> N e. NN0 ) | 
						
							| 24 | 23 | adantr |  |-  ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) -> N e. NN0 ) | 
						
							| 25 | 21 24 | jca |  |-  ( ( w e. ( N ClWWalksN G ) /\ ( w ` 0 ) = X ) -> ( X e. ( Vtx ` G ) /\ N e. NN0 ) ) | 
						
							| 26 | 25 | ex |  |-  ( w e. ( N ClWWalksN G ) -> ( ( w ` 0 ) = X -> ( X e. ( Vtx ` G ) /\ N e. NN0 ) ) ) | 
						
							| 27 | 26 | con3rr3 |  |-  ( -. ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> ( w e. ( N ClWWalksN G ) -> -. ( w ` 0 ) = X ) ) | 
						
							| 28 | 27 | ralrimiv |  |-  ( -. ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> A. w e. ( N ClWWalksN G ) -. ( w ` 0 ) = X ) | 
						
							| 29 |  | rabeq0 |  |-  ( { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } = (/) <-> A. w e. ( N ClWWalksN G ) -. ( w ` 0 ) = X ) | 
						
							| 30 | 28 29 | sylibr |  |-  ( -. ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } = (/) ) | 
						
							| 31 | 9 30 | eqtr4d |  |-  ( -. ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } ) | 
						
							| 32 | 8 31 | pm2.61i |  |-  ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } |