Description: A word over the set of vertices representing a closed walk on vertex X of length N in a graph G . (Contributed by AV, 25-Feb-2022) (Revised by AV, 24-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isclwwlknon | |- ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fveq1 | |- ( w = W -> ( w ` 0 ) = ( W ` 0 ) ) | |
| 2 | 1 | eqeq1d | |- ( w = W -> ( ( w ` 0 ) = X <-> ( W ` 0 ) = X ) ) | 
| 3 | clwwlknon |  |-  ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } | |
| 4 | 2 3 | elrab2 | |- ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) |