| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq2 |  |-  ( v = X -> ( ( w ` 0 ) = v <-> ( w ` 0 ) = X ) ) | 
						
							| 2 | 1 | rabbidv |  |-  ( v = X -> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } = { w e. ( n ClWWalksN G ) | ( w ` 0 ) = X } ) | 
						
							| 3 |  | oveq1 |  |-  ( n = 0 -> ( n ClWWalksN G ) = ( 0 ClWWalksN G ) ) | 
						
							| 4 |  | clwwlkn0 |  |-  ( 0 ClWWalksN G ) = (/) | 
						
							| 5 | 3 4 | eqtrdi |  |-  ( n = 0 -> ( n ClWWalksN G ) = (/) ) | 
						
							| 6 | 5 | rabeqdv |  |-  ( n = 0 -> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = X } = { w e. (/) | ( w ` 0 ) = X } ) | 
						
							| 7 |  | clwwlknonmpo |  |-  ( ClWWalksNOn ` G ) = ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) | 
						
							| 8 |  | 0ex |  |-  (/) e. _V | 
						
							| 9 | 8 | rabex |  |-  { w e. (/) | ( w ` 0 ) = X } e. _V | 
						
							| 10 | 2 6 7 9 | ovmpo |  |-  ( ( X e. ( Vtx ` G ) /\ 0 e. NN0 ) -> ( X ( ClWWalksNOn ` G ) 0 ) = { w e. (/) | ( w ` 0 ) = X } ) | 
						
							| 11 |  | rab0 |  |-  { w e. (/) | ( w ` 0 ) = X } = (/) | 
						
							| 12 | 10 11 | eqtrdi |  |-  ( ( X e. ( Vtx ` G ) /\ 0 e. NN0 ) -> ( X ( ClWWalksNOn ` G ) 0 ) = (/) ) | 
						
							| 13 | 7 | mpondm0 |  |-  ( -. ( X e. ( Vtx ` G ) /\ 0 e. NN0 ) -> ( X ( ClWWalksNOn ` G ) 0 ) = (/) ) | 
						
							| 14 | 12 13 | pm2.61i |  |-  ( X ( ClWWalksNOn ` G ) 0 ) = (/) |