Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( N = 0 -> ( X ( ClWWalksNOn ` G ) N ) = ( X ( ClWWalksNOn ` G ) 0 ) ) |
2 |
|
clwwlk0on0 |
|- ( X ( ClWWalksNOn ` G ) 0 ) = (/) |
3 |
1 2
|
eqtrdi |
|- ( N = 0 -> ( X ( ClWWalksNOn ` G ) N ) = (/) ) |
4 |
3
|
a1d |
|- ( N = 0 -> ( -. ( X e. ( Vtx ` G ) /\ N e. NN ) -> ( X ( ClWWalksNOn ` G ) N ) = (/) ) ) |
5 |
|
simprl |
|- ( ( N =/= 0 /\ ( X e. ( Vtx ` G ) /\ N e. NN0 ) ) -> X e. ( Vtx ` G ) ) |
6 |
|
elnnne0 |
|- ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) |
7 |
6
|
simplbi2 |
|- ( N e. NN0 -> ( N =/= 0 -> N e. NN ) ) |
8 |
7
|
adantl |
|- ( ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> ( N =/= 0 -> N e. NN ) ) |
9 |
8
|
impcom |
|- ( ( N =/= 0 /\ ( X e. ( Vtx ` G ) /\ N e. NN0 ) ) -> N e. NN ) |
10 |
5 9
|
jca |
|- ( ( N =/= 0 /\ ( X e. ( Vtx ` G ) /\ N e. NN0 ) ) -> ( X e. ( Vtx ` G ) /\ N e. NN ) ) |
11 |
10
|
stoic1a |
|- ( ( N =/= 0 /\ -. ( X e. ( Vtx ` G ) /\ N e. NN ) ) -> -. ( X e. ( Vtx ` G ) /\ N e. NN0 ) ) |
12 |
|
clwwlknonmpo |
|- ( ClWWalksNOn ` G ) = ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) |
13 |
12
|
mpondm0 |
|- ( -. ( X e. ( Vtx ` G ) /\ N e. NN0 ) -> ( X ( ClWWalksNOn ` G ) N ) = (/) ) |
14 |
11 13
|
syl |
|- ( ( N =/= 0 /\ -. ( X e. ( Vtx ` G ) /\ N e. NN ) ) -> ( X ( ClWWalksNOn ` G ) N ) = (/) ) |
15 |
14
|
ex |
|- ( N =/= 0 -> ( -. ( X e. ( Vtx ` G ) /\ N e. NN ) -> ( X ( ClWWalksNOn ` G ) N ) = (/) ) ) |
16 |
4 15
|
pm2.61ine |
|- ( -. ( X e. ( Vtx ` G ) /\ N e. NN ) -> ( X ( ClWWalksNOn ` G ) N ) = (/) ) |