| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknonfin.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | clwwlknon |  |-  ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } | 
						
							| 3 | 1 | eleq1i |  |-  ( V e. Fin <-> ( Vtx ` G ) e. Fin ) | 
						
							| 4 |  | clwwlknfi |  |-  ( ( Vtx ` G ) e. Fin -> ( N ClWWalksN G ) e. Fin ) | 
						
							| 5 | 3 4 | sylbi |  |-  ( V e. Fin -> ( N ClWWalksN G ) e. Fin ) | 
						
							| 6 |  | rabfi |  |-  ( ( N ClWWalksN G ) e. Fin -> { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } e. Fin ) | 
						
							| 7 | 5 6 | syl |  |-  ( V e. Fin -> { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } e. Fin ) | 
						
							| 8 | 2 7 | eqeltrid |  |-  ( V e. Fin -> ( X ( ClWWalksNOn ` G ) N ) e. Fin ) |