| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknonel.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | clwwlknonel.e |  |-  E = ( Edg ` G ) | 
						
							| 3 | 1 2 | isclwwlk |  |-  ( W e. ( ClWWalks ` G ) <-> ( ( W e. Word V /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) | 
						
							| 4 |  | simpl |  |-  ( ( ( # ` W ) = N /\ W = (/) ) -> ( # ` W ) = N ) | 
						
							| 5 |  | fveq2 |  |-  ( W = (/) -> ( # ` W ) = ( # ` (/) ) ) | 
						
							| 6 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 7 | 5 6 | eqtrdi |  |-  ( W = (/) -> ( # ` W ) = 0 ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( # ` W ) = N /\ W = (/) ) -> ( # ` W ) = 0 ) | 
						
							| 9 | 4 8 | eqtr3d |  |-  ( ( ( # ` W ) = N /\ W = (/) ) -> N = 0 ) | 
						
							| 10 | 9 | ex |  |-  ( ( # ` W ) = N -> ( W = (/) -> N = 0 ) ) | 
						
							| 11 | 10 | necon3d |  |-  ( ( # ` W ) = N -> ( N =/= 0 -> W =/= (/) ) ) | 
						
							| 12 | 11 | impcom |  |-  ( ( N =/= 0 /\ ( # ` W ) = N ) -> W =/= (/) ) | 
						
							| 13 | 12 | biantrud |  |-  ( ( N =/= 0 /\ ( # ` W ) = N ) -> ( W e. Word V <-> ( W e. Word V /\ W =/= (/) ) ) ) | 
						
							| 14 | 13 | bicomd |  |-  ( ( N =/= 0 /\ ( # ` W ) = N ) -> ( ( W e. Word V /\ W =/= (/) ) <-> W e. Word V ) ) | 
						
							| 15 | 14 | 3anbi1d |  |-  ( ( N =/= 0 /\ ( # ` W ) = N ) -> ( ( ( W e. Word V /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) | 
						
							| 16 | 3 15 | bitrid |  |-  ( ( N =/= 0 /\ ( # ` W ) = N ) -> ( W e. ( ClWWalks ` G ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) | 
						
							| 17 | 16 | a1d |  |-  ( ( N =/= 0 /\ ( # ` W ) = N ) -> ( ( W ` 0 ) = X -> ( W e. ( ClWWalks ` G ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) ) | 
						
							| 18 | 17 | expimpd |  |-  ( N =/= 0 -> ( ( ( # ` W ) = N /\ ( W ` 0 ) = X ) -> ( W e. ( ClWWalks ` G ) <-> ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) ) | 
						
							| 19 | 18 | pm5.32rd |  |-  ( N =/= 0 -> ( ( W e. ( ClWWalks ` G ) /\ ( ( # ` W ) = N /\ ( W ` 0 ) = X ) ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( ( # ` W ) = N /\ ( W ` 0 ) = X ) ) ) ) | 
						
							| 20 |  | isclwwlknon |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) ) | 
						
							| 21 |  | isclwwlkn |  |-  ( W e. ( N ClWWalksN G ) <-> ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) ) | 
						
							| 22 | 21 | anbi1i |  |-  ( ( W e. ( N ClWWalksN G ) /\ ( W ` 0 ) = X ) <-> ( ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) /\ ( W ` 0 ) = X ) ) | 
						
							| 23 |  | anass |  |-  ( ( ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) /\ ( W ` 0 ) = X ) <-> ( W e. ( ClWWalks ` G ) /\ ( ( # ` W ) = N /\ ( W ` 0 ) = X ) ) ) | 
						
							| 24 | 20 22 23 | 3bitri |  |-  ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( W e. ( ClWWalks ` G ) /\ ( ( # ` W ) = N /\ ( W ` 0 ) = X ) ) ) | 
						
							| 25 |  | 3anass |  |-  ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = N /\ ( W ` 0 ) = X ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( ( # ` W ) = N /\ ( W ` 0 ) = X ) ) ) | 
						
							| 26 | 19 24 25 | 3bitr4g |  |-  ( N =/= 0 -> ( W e. ( X ( ClWWalksNOn ` G ) N ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = N /\ ( W ` 0 ) = X ) ) ) |