| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknonel.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | clwwlknonel.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | isclwwlk | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  𝑁  ∧  𝑊  =  ∅ )  →  ( ♯ ‘ 𝑊 )  =  𝑁 ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑊  =  ∅  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 6 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( 𝑊  =  ∅  →  ( ♯ ‘ 𝑊 )  =  0 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  𝑁  ∧  𝑊  =  ∅ )  →  ( ♯ ‘ 𝑊 )  =  0 ) | 
						
							| 9 | 4 8 | eqtr3d | ⊢ ( ( ( ♯ ‘ 𝑊 )  =  𝑁  ∧  𝑊  =  ∅ )  →  𝑁  =  0 ) | 
						
							| 10 | 9 | ex | ⊢ ( ( ♯ ‘ 𝑊 )  =  𝑁  →  ( 𝑊  =  ∅  →  𝑁  =  0 ) ) | 
						
							| 11 | 10 | necon3d | ⊢ ( ( ♯ ‘ 𝑊 )  =  𝑁  →  ( 𝑁  ≠  0  →  𝑊  ≠  ∅ ) ) | 
						
							| 12 | 11 | impcom | ⊢ ( ( 𝑁  ≠  0  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  →  𝑊  ≠  ∅ ) | 
						
							| 13 | 12 | biantrud | ⊢ ( ( 𝑁  ≠  0  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  →  ( 𝑊  ∈  Word  𝑉  ↔  ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ ) ) ) | 
						
							| 14 | 13 | bicomd | ⊢ ( ( 𝑁  ≠  0  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  ↔  𝑊  ∈  Word  𝑉 ) ) | 
						
							| 15 | 14 | 3anbi1d | ⊢ ( ( 𝑁  ≠  0  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  →  ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 )  ↔  ( 𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) ) | 
						
							| 16 | 3 15 | bitrid | ⊢ ( ( 𝑁  ≠  0  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  →  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( 𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) ) | 
						
							| 17 | 16 | a1d | ⊢ ( ( 𝑁  ≠  0  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  →  ( ( 𝑊 ‘ 0 )  =  𝑋  →  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( 𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) ) ) | 
						
							| 18 | 17 | expimpd | ⊢ ( 𝑁  ≠  0  →  ( ( ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ( 𝑊 ‘ 0 )  =  𝑋 )  →  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( 𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 ) ) ) ) | 
						
							| 19 | 18 | pm5.32rd | ⊢ ( 𝑁  ≠  0  →  ( ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ( 𝑊 ‘ 0 )  =  𝑋 ) )  ↔  ( ( 𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 )  ∧  ( ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ( 𝑊 ‘ 0 )  =  𝑋 ) ) ) ) | 
						
							| 20 |  | isclwwlknon | ⊢ ( 𝑊  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑋 ) ) | 
						
							| 21 |  | isclwwlkn | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ↔  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 ) ) | 
						
							| 22 | 21 | anbi1i | ⊢ ( ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑊 ‘ 0 )  =  𝑋 )  ↔  ( ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ( 𝑊 ‘ 0 )  =  𝑋 ) ) | 
						
							| 23 |  | anass | ⊢ ( ( ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ( 𝑊 ‘ 0 )  =  𝑋 )  ↔  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ( 𝑊 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 24 | 20 22 23 | 3bitri | ⊢ ( 𝑊  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ( 𝑊 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 25 |  | 3anass | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ( 𝑊 ‘ 0 )  =  𝑋 )  ↔  ( ( 𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 )  ∧  ( ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ( 𝑊 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 26 | 19 24 25 | 3bitr4g | ⊢ ( 𝑁  ≠  0  →  ( 𝑊  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  ( ( 𝑊  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  𝐸 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁  ∧  ( 𝑊 ‘ 0 )  =  𝑋 ) ) ) |