| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  →  𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) )  →  𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 ) ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 )  →  𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) )  →  𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  →  ( 𝐴 ‘ 0 )  =  𝑋 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) )  →  ( 𝐴 ‘ 0 )  =  𝑋 ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 )  →  ( 𝐵 ‘ 0 )  =  𝑋 ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 )  →  𝑋  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) )  →  𝑋  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 10 | 6 9 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) )  →  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 11 |  | clwwlknccat | ⊢ ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( 𝐴  ++  𝐵 )  ∈  ( ( 𝑀  +  𝑁 )  ClWWalksN  𝐺 ) ) | 
						
							| 12 | 2 4 10 11 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) )  →  ( 𝐴  ++  𝐵 )  ∈  ( ( 𝑀  +  𝑁 )  ClWWalksN  𝐺 ) ) | 
						
							| 13 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 14 | 13 | clwwlknwrd | ⊢ ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  →  𝐴  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  →  𝐴  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) )  →  𝐴  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 17 | 13 | clwwlknwrd | ⊢ ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  𝐵  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 )  →  𝐵  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) )  →  𝐵  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 20 |  | clwwlknnn | ⊢ ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  →  𝑀  ∈  ℕ ) | 
						
							| 21 |  | clwwlknlen | ⊢ ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  →  ( ♯ ‘ 𝐴 )  =  𝑀 ) | 
						
							| 22 |  | nngt0 | ⊢ ( 𝑀  ∈  ℕ  →  0  <  𝑀 ) | 
						
							| 23 |  | breq2 | ⊢ ( ( ♯ ‘ 𝐴 )  =  𝑀  →  ( 0  <  ( ♯ ‘ 𝐴 )  ↔  0  <  𝑀 ) ) | 
						
							| 24 | 22 23 | syl5ibrcom | ⊢ ( 𝑀  ∈  ℕ  →  ( ( ♯ ‘ 𝐴 )  =  𝑀  →  0  <  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 25 | 20 21 24 | sylc | ⊢ ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  →  0  <  ( ♯ ‘ 𝐴 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  →  0  <  ( ♯ ‘ 𝐴 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) )  →  0  <  ( ♯ ‘ 𝐴 ) ) | 
						
							| 28 |  | ccatfv0 | ⊢ ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  0  <  ( ♯ ‘ 𝐴 ) )  →  ( ( 𝐴  ++  𝐵 ) ‘ 0 )  =  ( 𝐴 ‘ 0 ) ) | 
						
							| 29 | 16 19 27 28 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) )  →  ( ( 𝐴  ++  𝐵 ) ‘ 0 )  =  ( 𝐴 ‘ 0 ) ) | 
						
							| 30 | 29 6 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) )  →  ( ( 𝐴  ++  𝐵 ) ‘ 0 )  =  𝑋 ) | 
						
							| 31 | 12 30 | jca | ⊢ ( ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) )  →  ( ( 𝐴  ++  𝐵 )  ∈  ( ( 𝑀  +  𝑁 )  ClWWalksN  𝐺 )  ∧  ( ( 𝐴  ++  𝐵 ) ‘ 0 )  =  𝑋 ) ) | 
						
							| 32 |  | isclwwlknon | ⊢ ( 𝐴  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑀 )  ↔  ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 ) ) | 
						
							| 33 |  | isclwwlknon | ⊢ ( 𝐵  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) ) | 
						
							| 34 | 32 33 | anbi12i | ⊢ ( ( 𝐴  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑀 )  ∧  𝐵  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  ↔  ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  𝑋 )  ∧  ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐵 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 35 |  | isclwwlknon | ⊢ ( ( 𝐴  ++  𝐵 )  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑀  +  𝑁 ) )  ↔  ( ( 𝐴  ++  𝐵 )  ∈  ( ( 𝑀  +  𝑁 )  ClWWalksN  𝐺 )  ∧  ( ( 𝐴  ++  𝐵 ) ‘ 0 )  =  𝑋 ) ) | 
						
							| 36 | 31 34 35 | 3imtr4i | ⊢ ( ( 𝐴  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑀 )  ∧  𝐵  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) )  →  ( 𝐴  ++  𝐵 )  ∈  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑀  +  𝑁 ) ) ) |