| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isclwwlkn | ⊢ ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ↔  ( 𝐴  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐴 )  =  𝑀 ) ) | 
						
							| 2 |  | isclwwlkn | ⊢ ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ↔  ( 𝐵  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐵 )  =  𝑁 ) ) | 
						
							| 3 |  | biid | ⊢ ( ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 )  ↔  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐴  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐴 )  =  𝑀 )  →  𝐴  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐵  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐵 )  =  𝑁 )  →  𝐵  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 6 |  | id | ⊢ ( ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 )  →  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 7 |  | clwwlkccat | ⊢ ( ( 𝐴  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝐵  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( 𝐴  ++  𝐵 )  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 8 | 4 5 6 7 | syl3an | ⊢ ( ( ( 𝐴  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐴 )  =  𝑀 )  ∧  ( 𝐵  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝐵 )  =  𝑁 )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( 𝐴  ++  𝐵 )  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 9 | 1 2 3 8 | syl3anb | ⊢ ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( 𝐴  ++  𝐵 )  ∈  ( ClWWalks ‘ 𝐺 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 11 | 10 | clwwlknwrd | ⊢ ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  →  𝐴  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 12 | 10 | clwwlknwrd | ⊢ ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  𝐵  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 13 |  | ccatlen | ⊢ ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 15 |  | clwwlknlen | ⊢ ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  →  ( ♯ ‘ 𝐴 )  =  𝑀 ) | 
						
							| 16 |  | clwwlknlen | ⊢ ( 𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( ♯ ‘ 𝐵 )  =  𝑁 ) | 
						
							| 17 | 15 16 | oveqan12d | ⊢ ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  ( ( ♯ ‘ 𝐴 )  +  ( ♯ ‘ 𝐵 ) )  =  ( 𝑀  +  𝑁 ) ) | 
						
							| 18 | 14 17 | eqtrd | ⊢ ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( 𝑀  +  𝑁 ) ) | 
						
							| 19 | 18 | 3adant3 | ⊢ ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( 𝑀  +  𝑁 ) ) | 
						
							| 20 |  | isclwwlkn | ⊢ ( ( 𝐴  ++  𝐵 )  ∈  ( ( 𝑀  +  𝑁 )  ClWWalksN  𝐺 )  ↔  ( ( 𝐴  ++  𝐵 )  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  =  ( 𝑀  +  𝑁 ) ) ) | 
						
							| 21 | 9 19 20 | sylanbrc | ⊢ ( ( 𝐴  ∈  ( 𝑀  ClWWalksN  𝐺 )  ∧  𝐵  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( 𝐴  ++  𝐵 )  ∈  ( ( 𝑀  +  𝑁 )  ClWWalksN  𝐺 ) ) |