| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isclwwlkn |  |-  ( A e. ( M ClWWalksN G ) <-> ( A e. ( ClWWalks ` G ) /\ ( # ` A ) = M ) ) | 
						
							| 2 |  | isclwwlkn |  |-  ( B e. ( N ClWWalksN G ) <-> ( B e. ( ClWWalks ` G ) /\ ( # ` B ) = N ) ) | 
						
							| 3 |  | biid |  |-  ( ( A ` 0 ) = ( B ` 0 ) <-> ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 4 |  | simpl |  |-  ( ( A e. ( ClWWalks ` G ) /\ ( # ` A ) = M ) -> A e. ( ClWWalks ` G ) ) | 
						
							| 5 |  | simpl |  |-  ( ( B e. ( ClWWalks ` G ) /\ ( # ` B ) = N ) -> B e. ( ClWWalks ` G ) ) | 
						
							| 6 |  | id |  |-  ( ( A ` 0 ) = ( B ` 0 ) -> ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 7 |  | clwwlkccat |  |-  ( ( A e. ( ClWWalks ` G ) /\ B e. ( ClWWalks ` G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ClWWalks ` G ) ) | 
						
							| 8 | 4 5 6 7 | syl3an |  |-  ( ( ( A e. ( ClWWalks ` G ) /\ ( # ` A ) = M ) /\ ( B e. ( ClWWalks ` G ) /\ ( # ` B ) = N ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ClWWalks ` G ) ) | 
						
							| 9 | 1 2 3 8 | syl3anb |  |-  ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ClWWalks ` G ) ) | 
						
							| 10 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 11 | 10 | clwwlknwrd |  |-  ( A e. ( M ClWWalksN G ) -> A e. Word ( Vtx ` G ) ) | 
						
							| 12 | 10 | clwwlknwrd |  |-  ( B e. ( N ClWWalksN G ) -> B e. Word ( Vtx ` G ) ) | 
						
							| 13 |  | ccatlen |  |-  ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) | 
						
							| 14 | 11 12 13 | syl2an |  |-  ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) | 
						
							| 15 |  | clwwlknlen |  |-  ( A e. ( M ClWWalksN G ) -> ( # ` A ) = M ) | 
						
							| 16 |  | clwwlknlen |  |-  ( B e. ( N ClWWalksN G ) -> ( # ` B ) = N ) | 
						
							| 17 | 15 16 | oveqan12d |  |-  ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) ) -> ( ( # ` A ) + ( # ` B ) ) = ( M + N ) ) | 
						
							| 18 | 14 17 | eqtrd |  |-  ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) ) -> ( # ` ( A ++ B ) ) = ( M + N ) ) | 
						
							| 19 | 18 | 3adant3 |  |-  ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( # ` ( A ++ B ) ) = ( M + N ) ) | 
						
							| 20 |  | isclwwlkn |  |-  ( ( A ++ B ) e. ( ( M + N ) ClWWalksN G ) <-> ( ( A ++ B ) e. ( ClWWalks ` G ) /\ ( # ` ( A ++ B ) ) = ( M + N ) ) ) | 
						
							| 21 | 9 19 20 | sylanbrc |  |-  ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ( M + N ) ClWWalksN G ) ) |