| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 3 | 1 2 | clwwlknp |  |-  ( W e. ( N ClWWalksN G ) -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 4 |  | simpr |  |-  ( ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( ZZ>= ` 2 ) ) /\ G e. UMGraph ) -> G e. UMGraph ) | 
						
							| 5 |  | uz2m1nn |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) | 
						
							| 6 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( N - 1 ) ) <-> ( N - 1 ) e. NN ) | 
						
							| 7 | 5 6 | sylibr |  |-  ( N e. ( ZZ>= ` 2 ) -> 0 e. ( 0 ..^ ( N - 1 ) ) ) | 
						
							| 8 |  | fveq2 |  |-  ( i = 0 -> ( W ` i ) = ( W ` 0 ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ i = 0 ) -> ( W ` i ) = ( W ` 0 ) ) | 
						
							| 10 |  | oveq1 |  |-  ( i = 0 -> ( i + 1 ) = ( 0 + 1 ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ i = 0 ) -> ( i + 1 ) = ( 0 + 1 ) ) | 
						
							| 12 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ i = 0 ) -> ( i + 1 ) = 1 ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ i = 0 ) -> ( W ` ( i + 1 ) ) = ( W ` 1 ) ) | 
						
							| 15 | 9 14 | preq12d |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ i = 0 ) -> { ( W ` i ) , ( W ` ( i + 1 ) ) } = { ( W ` 0 ) , ( W ` 1 ) } ) | 
						
							| 16 | 15 | eleq1d |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ i = 0 ) -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 17 | 7 16 | rspcdv |  |-  ( N e. ( ZZ>= ` 2 ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 18 | 17 | com12 |  |-  ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( N e. ( ZZ>= ` 2 ) -> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 19 | 18 | 3ad2ant2 |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( N e. ( ZZ>= ` 2 ) -> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 20 | 19 | imp |  |-  ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( ZZ>= ` 2 ) ) -> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( ZZ>= ` 2 ) ) /\ G e. UMGraph ) -> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) | 
						
							| 22 | 2 | umgredgne |  |-  ( ( G e. UMGraph /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) -> ( W ` 0 ) =/= ( W ` 1 ) ) | 
						
							| 23 | 22 | necomd |  |-  ( ( G e. UMGraph /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) -> ( W ` 1 ) =/= ( W ` 0 ) ) | 
						
							| 24 | 4 21 23 | syl2anc |  |-  ( ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( ZZ>= ` 2 ) ) /\ G e. UMGraph ) -> ( W ` 1 ) =/= ( W ` 0 ) ) | 
						
							| 25 | 24 | exp31 |  |-  ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( N e. ( ZZ>= ` 2 ) -> ( G e. UMGraph -> ( W ` 1 ) =/= ( W ` 0 ) ) ) ) | 
						
							| 26 | 3 25 | syl |  |-  ( W e. ( N ClWWalksN G ) -> ( N e. ( ZZ>= ` 2 ) -> ( G e. UMGraph -> ( W ` 1 ) =/= ( W ` 0 ) ) ) ) | 
						
							| 27 | 26 | 3imp31 |  |-  ( ( G e. UMGraph /\ N e. ( ZZ>= ` 2 ) /\ W e. ( N ClWWalksN G ) ) -> ( W ` 1 ) =/= ( W ` 0 ) ) |