Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2b2 |
|- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) |
2 |
|
1nn0 |
|- 1 e. NN0 |
3 |
2
|
a1i |
|- ( ( N e. NN /\ 1 < N ) -> 1 e. NN0 ) |
4 |
|
simpl |
|- ( ( N e. NN /\ 1 < N ) -> N e. NN ) |
5 |
|
simpr |
|- ( ( N e. NN /\ 1 < N ) -> 1 < N ) |
6 |
|
elfzo0 |
|- ( 1 e. ( 0 ..^ N ) <-> ( 1 e. NN0 /\ N e. NN /\ 1 < N ) ) |
7 |
3 4 5 6
|
syl3anbrc |
|- ( ( N e. NN /\ 1 < N ) -> 1 e. ( 0 ..^ N ) ) |
8 |
1 7
|
sylbi |
|- ( N e. ( ZZ>= ` 2 ) -> 1 e. ( 0 ..^ N ) ) |
9 |
8
|
3ad2ant2 |
|- ( ( G e. UMGraph /\ N e. ( ZZ>= ` 2 ) /\ W e. ( N ClWWalksN G ) ) -> 1 e. ( 0 ..^ N ) ) |
10 |
|
fveq2 |
|- ( i = 1 -> ( W ` i ) = ( W ` 1 ) ) |
11 |
10
|
adantl |
|- ( ( ( G e. UMGraph /\ N e. ( ZZ>= ` 2 ) /\ W e. ( N ClWWalksN G ) ) /\ i = 1 ) -> ( W ` i ) = ( W ` 1 ) ) |
12 |
11
|
neeq1d |
|- ( ( ( G e. UMGraph /\ N e. ( ZZ>= ` 2 ) /\ W e. ( N ClWWalksN G ) ) /\ i = 1 ) -> ( ( W ` i ) =/= ( W ` 0 ) <-> ( W ` 1 ) =/= ( W ` 0 ) ) ) |
13 |
|
umgr2cwwk2dif |
|- ( ( G e. UMGraph /\ N e. ( ZZ>= ` 2 ) /\ W e. ( N ClWWalksN G ) ) -> ( W ` 1 ) =/= ( W ` 0 ) ) |
14 |
9 12 13
|
rspcedvd |
|- ( ( G e. UMGraph /\ N e. ( ZZ>= ` 2 ) /\ W e. ( N ClWWalksN G ) ) -> E. i e. ( 0 ..^ N ) ( W ` i ) =/= ( W ` 0 ) ) |