| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluz2b2 |  |-  ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ 1 < N ) ) | 
						
							| 2 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 3 | 2 | a1i |  |-  ( ( N e. NN /\ 1 < N ) -> 1 e. NN0 ) | 
						
							| 4 |  | simpl |  |-  ( ( N e. NN /\ 1 < N ) -> N e. NN ) | 
						
							| 5 |  | simpr |  |-  ( ( N e. NN /\ 1 < N ) -> 1 < N ) | 
						
							| 6 |  | elfzo0 |  |-  ( 1 e. ( 0 ..^ N ) <-> ( 1 e. NN0 /\ N e. NN /\ 1 < N ) ) | 
						
							| 7 | 3 4 5 6 | syl3anbrc |  |-  ( ( N e. NN /\ 1 < N ) -> 1 e. ( 0 ..^ N ) ) | 
						
							| 8 | 1 7 | sylbi |  |-  ( N e. ( ZZ>= ` 2 ) -> 1 e. ( 0 ..^ N ) ) | 
						
							| 9 | 8 | 3ad2ant2 |  |-  ( ( G e. UMGraph /\ N e. ( ZZ>= ` 2 ) /\ W e. ( N ClWWalksN G ) ) -> 1 e. ( 0 ..^ N ) ) | 
						
							| 10 |  | fveq2 |  |-  ( i = 1 -> ( W ` i ) = ( W ` 1 ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( G e. UMGraph /\ N e. ( ZZ>= ` 2 ) /\ W e. ( N ClWWalksN G ) ) /\ i = 1 ) -> ( W ` i ) = ( W ` 1 ) ) | 
						
							| 12 | 11 | neeq1d |  |-  ( ( ( G e. UMGraph /\ N e. ( ZZ>= ` 2 ) /\ W e. ( N ClWWalksN G ) ) /\ i = 1 ) -> ( ( W ` i ) =/= ( W ` 0 ) <-> ( W ` 1 ) =/= ( W ` 0 ) ) ) | 
						
							| 13 |  | umgr2cwwk2dif |  |-  ( ( G e. UMGraph /\ N e. ( ZZ>= ` 2 ) /\ W e. ( N ClWWalksN G ) ) -> ( W ` 1 ) =/= ( W ` 0 ) ) | 
						
							| 14 | 9 12 13 | rspcedvd |  |-  ( ( G e. UMGraph /\ N e. ( ZZ>= ` 2 ) /\ W e. ( N ClWWalksN G ) ) -> E. i e. ( 0 ..^ N ) ( W ` i ) =/= ( W ` 0 ) ) |