| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 | 1 2 | clwwlknp | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  ∧  𝐺  ∈  UMGraph )  →  𝐺  ∈  UMGraph ) | 
						
							| 5 |  | uz2m1nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  −  1 )  ∈  ℕ ) | 
						
							| 6 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ ( 𝑁  −  1 ) )  ↔  ( 𝑁  −  1 )  ∈  ℕ ) | 
						
							| 7 | 5 6 | sylibr | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  0  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑖  =  0 )  →  ( 𝑊 ‘ 𝑖 )  =  ( 𝑊 ‘ 0 ) ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑖  =  0  →  ( 𝑖  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑖  =  0 )  →  ( 𝑖  +  1 )  =  ( 0  +  1 ) ) | 
						
							| 12 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 13 | 11 12 | eqtrdi | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑖  =  0 )  →  ( 𝑖  +  1 )  =  1 ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑖  =  0 )  →  ( 𝑊 ‘ ( 𝑖  +  1 ) )  =  ( 𝑊 ‘ 1 ) ) | 
						
							| 15 | 9 14 | preq12d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑖  =  0 )  →  { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  =  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) } ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑖  =  0 )  →  ( { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 17 | 7 16 | rspcdv | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 18 | 17 | com12 | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 19 | 18 | 3ad2ant2 | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  →  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  ∧  𝐺  ∈  UMGraph )  →  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 22 | 2 | umgredgne | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑊 ‘ 0 )  ≠  ( 𝑊 ‘ 1 ) ) | 
						
							| 23 | 22 | necomd | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { ( 𝑊 ‘ 0 ) ,  ( 𝑊 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑊 ‘ 1 )  ≠  ( 𝑊 ‘ 0 ) ) | 
						
							| 24 | 4 21 23 | syl2anc | ⊢ ( ( ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 ) )  ∧  𝐺  ∈  UMGraph )  →  ( 𝑊 ‘ 1 )  ≠  ( 𝑊 ‘ 0 ) ) | 
						
							| 25 | 24 | exp31 | ⊢ ( ( ( 𝑊  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑊 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐺  ∈  UMGraph  →  ( 𝑊 ‘ 1 )  ≠  ( 𝑊 ‘ 0 ) ) ) ) | 
						
							| 26 | 3 25 | syl | ⊢ ( 𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐺  ∈  UMGraph  →  ( 𝑊 ‘ 1 )  ≠  ( 𝑊 ‘ 0 ) ) ) ) | 
						
							| 27 | 26 | 3imp31 | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑊  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  ( 𝑊 ‘ 1 )  ≠  ( 𝑊 ‘ 0 ) ) |