Metamath Proof Explorer


Theorem umgr2cwwk2dif

Description: If a word represents a closed walk of length at least 2 in a multigraph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Assertion umgr2cwwk2dif GUMGraphN2WNClWWalksNGW1W0

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid EdgG=EdgG
3 1 2 clwwlknp WNClWWalksNGWWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgG
4 simpr WWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgGN2GUMGraphGUMGraph
5 uz2m1nn N2N1
6 lbfzo0 00..^N1N1
7 5 6 sylibr N200..^N1
8 fveq2 i=0Wi=W0
9 8 adantl N2i=0Wi=W0
10 oveq1 i=0i+1=0+1
11 10 adantl N2i=0i+1=0+1
12 0p1e1 0+1=1
13 11 12 eqtrdi N2i=0i+1=1
14 13 fveq2d N2i=0Wi+1=W1
15 9 14 preq12d N2i=0WiWi+1=W0W1
16 15 eleq1d N2i=0WiWi+1EdgGW0W1EdgG
17 7 16 rspcdv N2i0..^N1WiWi+1EdgGW0W1EdgG
18 17 com12 i0..^N1WiWi+1EdgGN2W0W1EdgG
19 18 3ad2ant2 WWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgGN2W0W1EdgG
20 19 imp WWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgGN2W0W1EdgG
21 20 adantr WWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgGN2GUMGraphW0W1EdgG
22 2 umgredgne GUMGraphW0W1EdgGW0W1
23 22 necomd GUMGraphW0W1EdgGW1W0
24 4 21 23 syl2anc WWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgGN2GUMGraphW1W0
25 24 exp31 WWordVtxGW=Ni0..^N1WiWi+1EdgGlastSWW0EdgGN2GUMGraphW1W0
26 3 25 syl WNClWWalksNGN2GUMGraphW1W0
27 26 3imp31 GUMGraphN2WNClWWalksNGW1W0