Metamath Proof Explorer


Theorem clwwlknp

Description: Properties of a set being a closed walk (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 24-Apr-2021) (Proof shortened by AV, 23-Mar-2022)

Ref Expression
Hypotheses isclwwlknx.v V=VtxG
isclwwlknx.e E=EdgG
Assertion clwwlknp WNClWWalksNGWWordVW=Ni0..^N1WiWi+1ElastSWW0E

Proof

Step Hyp Ref Expression
1 isclwwlknx.v V=VtxG
2 isclwwlknx.e E=EdgG
3 1 clwwlknbp WNClWWalksNGWWordVW=N
4 simpr WNClWWalksNGWWordVW=NWWordVW=N
5 clwwlknnn WNClWWalksNGN
6 1 2 isclwwlknx NWNClWWalksNGWWordVi0..^W1WiWi+1ElastSWW0EW=N
7 3simpc WWordVi0..^W1WiWi+1ElastSWW0Ei0..^W1WiWi+1ElastSWW0E
8 7 adantr WWordVi0..^W1WiWi+1ElastSWW0EW=Ni0..^W1WiWi+1ElastSWW0E
9 6 8 syl6bi NWNClWWalksNGi0..^W1WiWi+1ElastSWW0E
10 5 9 mpcom WNClWWalksNGi0..^W1WiWi+1ElastSWW0E
11 10 adantr WNClWWalksNGWWordVW=Ni0..^W1WiWi+1ElastSWW0E
12 oveq1 W=NW1=N1
13 12 oveq2d W=N0..^W1=0..^N1
14 13 raleqdv W=Ni0..^W1WiWi+1Ei0..^N1WiWi+1E
15 14 anbi1d W=Ni0..^W1WiWi+1ElastSWW0Ei0..^N1WiWi+1ElastSWW0E
16 15 ad2antll WNClWWalksNGWWordVW=Ni0..^W1WiWi+1ElastSWW0Ei0..^N1WiWi+1ElastSWW0E
17 11 16 mpbid WNClWWalksNGWWordVW=Ni0..^N1WiWi+1ElastSWW0E
18 4 17 jca WNClWWalksNGWWordVW=NWWordVW=Ni0..^N1WiWi+1ElastSWW0E
19 3 18 mpdan WNClWWalksNGWWordVW=Ni0..^N1WiWi+1ElastSWW0E
20 3anass WWordVW=Ni0..^N1WiWi+1ElastSWW0EWWordVW=Ni0..^N1WiWi+1ElastSWW0E
21 19 20 sylibr WNClWWalksNGWWordVW=Ni0..^N1WiWi+1ElastSWW0E