Description: Properties of a set being a closed walk (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 24-Apr-2021) (Proof shortened by AV, 23-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isclwwlknx.v | |
|
isclwwlknx.e | |
||
Assertion | clwwlknp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isclwwlknx.v | |
|
2 | isclwwlknx.e | |
|
3 | 1 | clwwlknbp | |
4 | simpr | |
|
5 | clwwlknnn | |
|
6 | 1 2 | isclwwlknx | |
7 | 3simpc | |
|
8 | 7 | adantr | |
9 | 6 8 | syl6bi | |
10 | 5 9 | mpcom | |
11 | 10 | adantr | |
12 | oveq1 | |
|
13 | 12 | oveq2d | |
14 | 13 | raleqdv | |
15 | 14 | anbi1d | |
16 | 15 | ad2antll | |
17 | 11 16 | mpbid | |
18 | 4 17 | jca | |
19 | 3 18 | mpdan | |
20 | 3anass | |
|
21 | 19 20 | sylibr | |