| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1l | ⊢ ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  𝐴  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 2 |  | simp1l | ⊢ ( ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  𝐵  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 3 |  | ccatcl | ⊢ ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( 𝐴  ++  𝐵 )  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 4 | 1 2 3 | syl2an | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝐴  ++  𝐵 )  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 5 |  | ccat0 | ⊢ ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ∅  ↔  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) | 
						
							| 6 | 5 | adantlr | ⊢ ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  𝐵  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ∅  ↔  ( 𝐴  =  ∅  ∧  𝐵  =  ∅ ) ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝐴  =  ∅  ∧  𝐵  =  ∅ )  →  𝐵  =  ∅ ) | 
						
							| 8 | 6 7 | biimtrdi | ⊢ ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  𝐵  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( ( 𝐴  ++  𝐵 )  =  ∅  →  𝐵  =  ∅ ) ) | 
						
							| 9 | 8 | necon3d | ⊢ ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  𝐵  ∈  Word  ( Vtx ‘ 𝐺 ) )  →  ( 𝐵  ≠  ∅  →  ( 𝐴  ++  𝐵 )  ≠  ∅ ) ) | 
						
							| 10 | 9 | impr | ⊢ ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ ) )  →  ( 𝐴  ++  𝐵 )  ≠  ∅ ) | 
						
							| 11 | 10 | 3ad2antr1 | ⊢ ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝐴  ++  𝐵 )  ≠  ∅ ) | 
						
							| 12 | 11 | 3ad2antl1 | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝐴  ++  𝐵 )  ≠  ∅ ) | 
						
							| 13 | 4 12 | jca | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ( 𝐴  ++  𝐵 )  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ++  𝐵 )  ≠  ∅ ) ) | 
						
							| 14 | 13 | 3adant3 | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( ( 𝐴  ++  𝐵 )  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ++  𝐵 )  ≠  ∅ ) ) | 
						
							| 15 |  | clwwlkccatlem | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 ) ) { ( ( 𝐴  ++  𝐵 ) ‘ 𝑖 ) ,  ( ( 𝐴  ++  𝐵 ) ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 16 |  | simpl1l | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  𝐴  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 17 |  | simpr1l | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  𝐵  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 18 |  | simpr1r | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  𝐵  ≠  ∅ ) | 
						
							| 19 |  | lswccatn0lsw | ⊢ ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  →  ( lastS ‘ ( 𝐴  ++  𝐵 ) )  =  ( lastS ‘ 𝐵 ) ) | 
						
							| 20 | 16 17 18 19 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( lastS ‘ ( 𝐴  ++  𝐵 ) )  =  ( lastS ‘ 𝐵 ) ) | 
						
							| 21 | 20 | 3adant3 | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( lastS ‘ ( 𝐴  ++  𝐵 ) )  =  ( lastS ‘ 𝐵 ) ) | 
						
							| 22 |  | hashgt0 | ⊢ ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  →  0  <  ( ♯ ‘ 𝐴 ) ) | 
						
							| 23 | 22 | 3ad2ant1 | ⊢ ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  0  <  ( ♯ ‘ 𝐴 ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  0  <  ( ♯ ‘ 𝐴 ) ) | 
						
							| 25 |  | ccatfv0 | ⊢ ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  0  <  ( ♯ ‘ 𝐴 ) )  →  ( ( 𝐴  ++  𝐵 ) ‘ 0 )  =  ( 𝐴 ‘ 0 ) ) | 
						
							| 26 | 16 17 24 25 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ( 𝐴  ++  𝐵 ) ‘ 0 )  =  ( 𝐴 ‘ 0 ) ) | 
						
							| 27 | 26 | 3adant3 | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( ( 𝐴  ++  𝐵 ) ‘ 0 )  =  ( 𝐴 ‘ 0 ) ) | 
						
							| 28 |  | simp3 | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 29 | 27 28 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( ( 𝐴  ++  𝐵 ) ‘ 0 )  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 30 | 21 29 | preq12d | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  { ( lastS ‘ ( 𝐴  ++  𝐵 ) ) ,  ( ( 𝐴  ++  𝐵 ) ‘ 0 ) }  =  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) } ) | 
						
							| 31 |  | simp23 | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 32 | 30 31 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  { ( lastS ‘ ( 𝐴  ++  𝐵 ) ) ,  ( ( 𝐴  ++  𝐵 ) ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 33 | 14 15 32 | 3jca | ⊢ ( ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( ( ( 𝐴  ++  𝐵 )  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ++  𝐵 )  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 ) ) { ( ( 𝐴  ++  𝐵 ) ‘ 𝑖 ) ,  ( ( 𝐴  ++  𝐵 ) ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ ( 𝐴  ++  𝐵 ) ) ,  ( ( 𝐴  ++  𝐵 ) ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 34 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 35 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 36 | 34 35 | isclwwlk | ⊢ ( 𝐴  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 37 | 34 35 | isclwwlk | ⊢ ( 𝐵  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 38 |  | biid | ⊢ ( ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 )  ↔  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) ) | 
						
							| 39 | 36 37 38 | 3anbi123i | ⊢ ( ( 𝐴  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝐵  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  ↔  ( ( ( 𝐴  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐴  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐴 )  −  1 ) ) { ( 𝐴 ‘ 𝑖 ) ,  ( 𝐴 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐴 ) ,  ( 𝐴 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( 𝐵  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝐵  ≠  ∅ )  ∧  ∀ 𝑗  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐵 )  −  1 ) ) { ( 𝐵 ‘ 𝑗 ) ,  ( 𝐵 ‘ ( 𝑗  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝐵 ) ,  ( 𝐵 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) ) ) | 
						
							| 40 | 34 35 | isclwwlk | ⊢ ( ( 𝐴  ++  𝐵 )  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( ( ( 𝐴  ++  𝐵 )  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( 𝐴  ++  𝐵 )  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ ( 𝐴  ++  𝐵 ) )  −  1 ) ) { ( ( 𝐴  ++  𝐵 ) ‘ 𝑖 ) ,  ( ( 𝐴  ++  𝐵 ) ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ ( 𝐴  ++  𝐵 ) ) ,  ( ( 𝐴  ++  𝐵 ) ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 41 | 33 39 40 | 3imtr4i | ⊢ ( ( 𝐴  ∈  ( ClWWalks ‘ 𝐺 )  ∧  𝐵  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( 𝐴 ‘ 0 )  =  ( 𝐵 ‘ 0 ) )  →  ( 𝐴  ++  𝐵 )  ∈  ( ClWWalks ‘ 𝐺 ) ) |