Step |
Hyp |
Ref |
Expression |
1 |
|
ccatlen |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
2 |
1
|
oveq1d |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) = ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) = ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) ) |
4 |
|
lencl |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
5 |
4
|
nn0zd |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
6 |
|
lennncl |
⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
7 |
|
simpl |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
8 |
|
nnz |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
9 |
|
zaddcl |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
10 |
8 9
|
sylan2 |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
11 |
|
zre |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℤ → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
12 |
|
nnrp |
⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ → ( ♯ ‘ 𝐵 ) ∈ ℝ+ ) |
13 |
|
ltaddrp |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ+ ) → ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
15 |
7 10 14
|
3jca |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
16 |
5 6 15
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ ( 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) ) → ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
17 |
16
|
3impb |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
18 |
|
fzolb |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
19 |
17 18
|
sylibr |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
20 |
|
fzoend |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
22 |
3 21
|
eqeltrd |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
23 |
|
ccatval2 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) = ( 𝐵 ‘ ( ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
24 |
22 23
|
syld3an3 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) = ( 𝐵 ‘ ( ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
25 |
2
|
oveq1d |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) = ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) ) |
26 |
4
|
nn0cnd |
⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
27 |
|
lencl |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
28 |
27
|
nn0cnd |
⊢ ( 𝐵 ∈ Word 𝑉 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
29 |
|
addcl |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℂ ) |
30 |
|
1cnd |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → 1 ∈ ℂ ) |
31 |
|
simpl |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
32 |
29 30 31
|
sub32d |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) = ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − ( ♯ ‘ 𝐴 ) ) − 1 ) ) |
33 |
|
pncan2 |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − ( ♯ ‘ 𝐴 ) ) = ( ♯ ‘ 𝐵 ) ) |
34 |
33
|
oveq1d |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − ( ♯ ‘ 𝐴 ) ) − 1 ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
35 |
32 34
|
eqtrd |
⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℂ ∧ ( ♯ ‘ 𝐵 ) ∈ ℂ ) → ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
36 |
26 28 35
|
syl2an |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
37 |
25 36
|
eqtrd |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ) → ( ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
38 |
37
|
3adant3 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐵 ) − 1 ) ) |
39 |
38
|
fveq2d |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( 𝐵 ‘ ( ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) − ( ♯ ‘ 𝐴 ) ) ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
40 |
24 39
|
eqtrd |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
41 |
|
ovex |
⊢ ( 𝐴 ++ 𝐵 ) ∈ V |
42 |
|
lsw |
⊢ ( ( 𝐴 ++ 𝐵 ) ∈ V → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) ) |
43 |
41 42
|
mp1i |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) ) |
44 |
|
lsw |
⊢ ( 𝐵 ∈ Word 𝑉 → ( lastS ‘ 𝐵 ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
45 |
44
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( lastS ‘ 𝐵 ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐵 ) − 1 ) ) ) |
46 |
40 43 45
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( lastS ‘ 𝐵 ) ) |