| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | clwwlkbp | ⊢ ( 𝑃  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ ) ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑃  ∈  ( ClWWalks ‘ 𝐺 ) )  →  ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ ) ) | 
						
							| 4 |  | lencl | ⊢ ( 𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑃  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 7 |  | hasheq0 | ⊢ ( 𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( ( ♯ ‘ 𝑃 )  =  0  ↔  𝑃  =  ∅ ) ) | 
						
							| 8 | 7 | bicomd | ⊢ ( 𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑃  =  ∅  ↔  ( ♯ ‘ 𝑃 )  =  0 ) ) | 
						
							| 9 | 8 | necon3bid | ⊢ ( 𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑃  ≠  ∅  ↔  ( ♯ ‘ 𝑃 )  ≠  0 ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( 𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑃  ≠  ∅  →  ( ♯ ‘ 𝑃 )  ≠  0 ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝐺  ∈  V  →  ( 𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  →  ( 𝑃  ≠  ∅  →  ( ♯ ‘ 𝑃 )  ≠  0 ) ) ) | 
						
							| 12 | 11 | 3imp | ⊢ ( ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ )  →  ( ♯ ‘ 𝑃 )  ≠  0 ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑃  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ ) )  →  ( ♯ ‘ 𝑃 )  ≠  0 ) | 
						
							| 14 |  | clwwlk1loop | ⊢ ( ( 𝑃  ∈  ( ClWWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑃 )  =  1 )  →  { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 15 | 14 | expcom | ⊢ ( ( ♯ ‘ 𝑃 )  =  1  →  ( 𝑃  ∈  ( ClWWalks ‘ 𝐺 )  →  { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ 0 ) | 
						
							| 17 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 18 | 17 | umgredgne | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 0 ) ) | 
						
							| 19 |  | eqneqall | ⊢ ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ 0 )  →  ( ( 𝑃 ‘ 0 )  ≠  ( 𝑃 ‘ 0 )  →  ( ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ )  →  ( ♯ ‘ 𝑃 )  ≠  1 ) ) ) | 
						
							| 20 | 16 18 19 | mpsyl | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ )  →  ( ♯ ‘ 𝑃 )  ≠  1 ) ) | 
						
							| 21 | 20 | expcom | ⊢ ( { ( 𝑃 ‘ 0 ) ,  ( 𝑃 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 )  →  ( 𝐺  ∈  UMGraph  →  ( ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ )  →  ( ♯ ‘ 𝑃 )  ≠  1 ) ) ) | 
						
							| 22 | 15 21 | syl6 | ⊢ ( ( ♯ ‘ 𝑃 )  =  1  →  ( 𝑃  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝐺  ∈  UMGraph  →  ( ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ )  →  ( ♯ ‘ 𝑃 )  ≠  1 ) ) ) ) | 
						
							| 23 | 22 | com23 | ⊢ ( ( ♯ ‘ 𝑃 )  =  1  →  ( 𝐺  ∈  UMGraph  →  ( 𝑃  ∈  ( ClWWalks ‘ 𝐺 )  →  ( ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ )  →  ( ♯ ‘ 𝑃 )  ≠  1 ) ) ) ) | 
						
							| 24 | 23 | imp4c | ⊢ ( ( ♯ ‘ 𝑃 )  =  1  →  ( ( ( 𝐺  ∈  UMGraph  ∧  𝑃  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ ) )  →  ( ♯ ‘ 𝑃 )  ≠  1 ) ) | 
						
							| 25 |  | neqne | ⊢ ( ¬  ( ♯ ‘ 𝑃 )  =  1  →  ( ♯ ‘ 𝑃 )  ≠  1 ) | 
						
							| 26 | 25 | a1d | ⊢ ( ¬  ( ♯ ‘ 𝑃 )  =  1  →  ( ( ( 𝐺  ∈  UMGraph  ∧  𝑃  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ ) )  →  ( ♯ ‘ 𝑃 )  ≠  1 ) ) | 
						
							| 27 | 24 26 | pm2.61i | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑃  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ ) )  →  ( ♯ ‘ 𝑃 )  ≠  1 ) | 
						
							| 28 | 6 13 27 | 3jca | ⊢ ( ( ( 𝐺  ∈  UMGraph  ∧  𝑃  ∈  ( ClWWalks ‘ 𝐺 ) )  ∧  ( 𝐺  ∈  V  ∧  𝑃  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  𝑃  ≠  ∅ ) )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ≠  0  ∧  ( ♯ ‘ 𝑃 )  ≠  1 ) ) | 
						
							| 29 | 3 28 | mpdan | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑃  ∈  ( ClWWalks ‘ 𝐺 ) )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ≠  0  ∧  ( ♯ ‘ 𝑃 )  ≠  1 ) ) | 
						
							| 30 |  | nn0n0n1ge2 | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ≠  0  ∧  ( ♯ ‘ 𝑃 )  ≠  1 )  →  2  ≤  ( ♯ ‘ 𝑃 ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  𝑃  ∈  ( ClWWalks ‘ 𝐺 ) )  →  2  ≤  ( ♯ ‘ 𝑃 ) ) | 
						
							| 32 | 31 | ex | ⊢ ( 𝐺  ∈  UMGraph  →  ( 𝑃  ∈  ( ClWWalks ‘ 𝐺 )  →  2  ≤  ( ♯ ‘ 𝑃 ) ) ) |