| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 | 1 | clwwlkbp |  |-  ( P e. ( ClWWalks ` G ) -> ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) -> ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) | 
						
							| 4 |  | lencl |  |-  ( P e. Word ( Vtx ` G ) -> ( # ` P ) e. NN0 ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) e. NN0 ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) e. NN0 ) | 
						
							| 7 |  | hasheq0 |  |-  ( P e. Word ( Vtx ` G ) -> ( ( # ` P ) = 0 <-> P = (/) ) ) | 
						
							| 8 | 7 | bicomd |  |-  ( P e. Word ( Vtx ` G ) -> ( P = (/) <-> ( # ` P ) = 0 ) ) | 
						
							| 9 | 8 | necon3bid |  |-  ( P e. Word ( Vtx ` G ) -> ( P =/= (/) <-> ( # ` P ) =/= 0 ) ) | 
						
							| 10 | 9 | biimpd |  |-  ( P e. Word ( Vtx ` G ) -> ( P =/= (/) -> ( # ` P ) =/= 0 ) ) | 
						
							| 11 | 10 | a1i |  |-  ( G e. _V -> ( P e. Word ( Vtx ` G ) -> ( P =/= (/) -> ( # ` P ) =/= 0 ) ) ) | 
						
							| 12 | 11 | 3imp |  |-  ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 0 ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) =/= 0 ) | 
						
							| 14 |  | clwwlk1loop |  |-  ( ( P e. ( ClWWalks ` G ) /\ ( # ` P ) = 1 ) -> { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) ) | 
						
							| 15 | 14 | expcom |  |-  ( ( # ` P ) = 1 -> ( P e. ( ClWWalks ` G ) -> { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 16 |  | eqid |  |-  ( P ` 0 ) = ( P ` 0 ) | 
						
							| 17 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 18 | 17 | umgredgne |  |-  ( ( G e. UMGraph /\ { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> ( P ` 0 ) =/= ( P ` 0 ) ) | 
						
							| 19 |  | eqneqall |  |-  ( ( P ` 0 ) = ( P ` 0 ) -> ( ( P ` 0 ) =/= ( P ` 0 ) -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) ) | 
						
							| 20 | 16 18 19 | mpsyl |  |-  ( ( G e. UMGraph /\ { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) | 
						
							| 21 | 20 | expcom |  |-  ( { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) -> ( G e. UMGraph -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) ) | 
						
							| 22 | 15 21 | syl6 |  |-  ( ( # ` P ) = 1 -> ( P e. ( ClWWalks ` G ) -> ( G e. UMGraph -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) ) ) | 
						
							| 23 | 22 | com23 |  |-  ( ( # ` P ) = 1 -> ( G e. UMGraph -> ( P e. ( ClWWalks ` G ) -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) ) ) | 
						
							| 24 | 23 | imp4c |  |-  ( ( # ` P ) = 1 -> ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) =/= 1 ) ) | 
						
							| 25 |  | neqne |  |-  ( -. ( # ` P ) = 1 -> ( # ` P ) =/= 1 ) | 
						
							| 26 | 25 | a1d |  |-  ( -. ( # ` P ) = 1 -> ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) =/= 1 ) ) | 
						
							| 27 | 24 26 | pm2.61i |  |-  ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) =/= 1 ) | 
						
							| 28 | 6 13 27 | 3jca |  |-  ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( ( # ` P ) e. NN0 /\ ( # ` P ) =/= 0 /\ ( # ` P ) =/= 1 ) ) | 
						
							| 29 | 3 28 | mpdan |  |-  ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) -> ( ( # ` P ) e. NN0 /\ ( # ` P ) =/= 0 /\ ( # ` P ) =/= 1 ) ) | 
						
							| 30 |  | nn0n0n1ge2 |  |-  ( ( ( # ` P ) e. NN0 /\ ( # ` P ) =/= 0 /\ ( # ` P ) =/= 1 ) -> 2 <_ ( # ` P ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) -> 2 <_ ( # ` P ) ) | 
						
							| 32 | 31 | ex |  |-  ( G e. UMGraph -> ( P e. ( ClWWalks ` G ) -> 2 <_ ( # ` P ) ) ) |