| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  | 
						
							| 2 | 1 | clwwlkbp |  | 
						
							| 3 | 2 | adantl |  | 
						
							| 4 |  | lencl |  | 
						
							| 5 | 4 | 3ad2ant2 |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 |  | hasheq0 |  | 
						
							| 8 | 7 | bicomd |  | 
						
							| 9 | 8 | necon3bid |  | 
						
							| 10 | 9 | biimpd |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 | 11 | 3imp |  | 
						
							| 13 | 12 | adantl |  | 
						
							| 14 |  | clwwlk1loop |  | 
						
							| 15 | 14 | expcom |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 | umgredgne |  | 
						
							| 19 |  | eqneqall |  | 
						
							| 20 | 16 18 19 | mpsyl |  | 
						
							| 21 | 20 | expcom |  | 
						
							| 22 | 15 21 | syl6 |  | 
						
							| 23 | 22 | com23 |  | 
						
							| 24 | 23 | imp4c |  | 
						
							| 25 |  | neqne |  | 
						
							| 26 | 25 | a1d |  | 
						
							| 27 | 24 26 | pm2.61i |  | 
						
							| 28 | 6 13 27 | 3jca |  | 
						
							| 29 | 3 28 | mpdan |  | 
						
							| 30 |  | nn0n0n1ge2 |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 | 31 | ex |  |