Metamath Proof Explorer


Theorem umgrclwwlkge2

Description: A closed walk in a multigraph has a length of at least 2 (because it cannot have a loop). (Contributed by Alexander van der Vekens, 16-Sep-2018) (Revised by AV, 24-Apr-2021)

Ref Expression
Assertion umgrclwwlkge2 G UMGraph P ClWWalks G 2 P

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 clwwlkbp P ClWWalks G G V P Word Vtx G P
3 2 adantl G UMGraph P ClWWalks G G V P Word Vtx G P
4 lencl P Word Vtx G P 0
5 4 3ad2ant2 G V P Word Vtx G P P 0
6 5 adantl G UMGraph P ClWWalks G G V P Word Vtx G P P 0
7 hasheq0 P Word Vtx G P = 0 P =
8 7 bicomd P Word Vtx G P = P = 0
9 8 necon3bid P Word Vtx G P P 0
10 9 biimpd P Word Vtx G P P 0
11 10 a1i G V P Word Vtx G P P 0
12 11 3imp G V P Word Vtx G P P 0
13 12 adantl G UMGraph P ClWWalks G G V P Word Vtx G P P 0
14 clwwlk1loop P ClWWalks G P = 1 P 0 P 0 Edg G
15 14 expcom P = 1 P ClWWalks G P 0 P 0 Edg G
16 eqid P 0 = P 0
17 eqid Edg G = Edg G
18 17 umgredgne G UMGraph P 0 P 0 Edg G P 0 P 0
19 eqneqall P 0 = P 0 P 0 P 0 G V P Word Vtx G P P 1
20 16 18 19 mpsyl G UMGraph P 0 P 0 Edg G G V P Word Vtx G P P 1
21 20 expcom P 0 P 0 Edg G G UMGraph G V P Word Vtx G P P 1
22 15 21 syl6 P = 1 P ClWWalks G G UMGraph G V P Word Vtx G P P 1
23 22 com23 P = 1 G UMGraph P ClWWalks G G V P Word Vtx G P P 1
24 23 imp4c P = 1 G UMGraph P ClWWalks G G V P Word Vtx G P P 1
25 neqne ¬ P = 1 P 1
26 25 a1d ¬ P = 1 G UMGraph P ClWWalks G G V P Word Vtx G P P 1
27 24 26 pm2.61i G UMGraph P ClWWalks G G V P Word Vtx G P P 1
28 6 13 27 3jca G UMGraph P ClWWalks G G V P Word Vtx G P P 0 P 0 P 1
29 3 28 mpdan G UMGraph P ClWWalks G P 0 P 0 P 1
30 nn0n0n1ge2 P 0 P 0 P 1 2 P
31 29 30 syl G UMGraph P ClWWalks G 2 P
32 31 ex G UMGraph P ClWWalks G 2 P