| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lencl | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 2 |  | nn0cn | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 3 |  | peano2cnm | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℂ  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℂ ) | 
						
							| 4 | 3 | subid1d | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℂ  →  ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℂ  →  ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 )  =  ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  1 ) ) | 
						
							| 6 |  | sub1m1 | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℂ  →  ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  1 )  =  ( ( ♯ ‘ 𝑃 )  −  2 ) ) | 
						
							| 7 | 5 6 | eqtrd | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℂ  →  ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 )  =  ( ( ♯ ‘ 𝑃 )  −  2 ) ) | 
						
							| 8 | 1 2 7 | 3syl | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 )  =  ( ( ♯ ‘ 𝑃 )  −  2 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 )  =  ( ( ♯ ‘ 𝑃 )  −  2 ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) | 
						
							| 11 | 10 | raleqdv | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) ) | 
						
							| 12 | 11 | biimpcd | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  →  ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 )  →  ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  →  ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) ) | 
						
							| 15 | 14 | impcom | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) | 
						
							| 16 |  | lsw | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 17 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 18 | 17 | a1i | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( 2  −  1 )  =  1 ) | 
						
							| 19 | 18 | eqcomd | ⊢ ( 𝑃  ∈  Word  𝑉  →  1  =  ( 2  −  1 ) ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( ( ♯ ‘ 𝑃 )  −  ( 2  −  1 ) ) ) | 
						
							| 21 | 1 2 | syl | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ♯ ‘ 𝑃 )  ∈  ℂ ) | 
						
							| 22 |  | 2cnd | ⊢ ( 𝑃  ∈  Word  𝑉  →  2  ∈  ℂ ) | 
						
							| 23 |  | 1cnd | ⊢ ( 𝑃  ∈  Word  𝑉  →  1  ∈  ℂ ) | 
						
							| 24 | 21 22 23 | subsubd | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑃 )  −  ( 2  −  1 ) )  =  ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) | 
						
							| 25 | 20 24 | eqtrd | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) ) | 
						
							| 27 | 16 26 | eqtrd | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 ) )  →  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) ) | 
						
							| 30 |  | eqeq1 | ⊢ ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  ↔  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  ↔  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) ) ) | 
						
							| 32 | 29 31 | mpbid | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 ) )  →  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) ) | 
						
							| 33 | 32 | preq2d | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) } ) | 
						
							| 34 | 33 | eleq1d | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 ) )  →  ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸  ↔  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  ∈  ran  𝐸 ) ) | 
						
							| 35 | 34 | biimpd | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 ) )  →  ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  ∈  ran  𝐸 ) ) | 
						
							| 36 | 35 | ex | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  →  ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  ∈  ran  𝐸 ) ) ) | 
						
							| 37 | 36 | com13 | ⊢ ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  →  ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  ∈  ran  𝐸 ) ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  →  ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  ∈  ran  𝐸 ) ) ) | 
						
							| 39 | 38 | impcom | ⊢ ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  →  ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  ∈  ran  𝐸 ) ) | 
						
							| 40 | 39 | impcom | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  ∈  ran  𝐸 ) | 
						
							| 41 |  | ovexd | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  V ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑖  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) | 
						
							| 43 |  | fvoveq1 | ⊢ ( 𝑖  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) ) | 
						
							| 44 | 42 43 | preq12d | ⊢ ( 𝑖  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) } ) | 
						
							| 45 | 44 | eleq1d | ⊢ ( 𝑖  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ↔  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  ∈  ran  𝐸 ) ) | 
						
							| 46 | 45 | ralunsn | ⊢ ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  V  →  ( ∀ 𝑖  ∈  ( ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∪  { ( ( ♯ ‘ 𝑃 )  −  2 ) } ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  ∈  ran  𝐸 ) ) ) | 
						
							| 47 | 41 46 | syl | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) )  →  ( ∀ 𝑖  ∈  ( ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∪  { ( ( ♯ ‘ 𝑃 )  −  2 ) } ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  ∈  ran  𝐸 ) ) ) | 
						
							| 48 | 15 40 47 | mpbir2and | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) )  →  ∀ 𝑖  ∈  ( ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∪  { ( ( ♯ ‘ 𝑃 )  −  2 ) } ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) | 
						
							| 49 |  | 1e2m1 | ⊢ 1  =  ( 2  −  1 ) | 
						
							| 50 | 49 | a1i | ⊢ ( 𝑃  ∈  Word  𝑉  →  1  =  ( 2  −  1 ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( ( ♯ ‘ 𝑃 )  −  ( 2  −  1 ) ) ) | 
						
							| 52 | 51 24 | eqtrd | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 0 ..^ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 0 ..^ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) ) | 
						
							| 55 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 56 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 57 | 56 | a1i | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 58 | 55 57 | subge0d | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 0  ≤  ( ( ♯ ‘ 𝑃 )  −  2 )  ↔  2  ≤  ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 59 | 58 | biimprd | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  0  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) | 
						
							| 60 |  | nn0z | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℤ ) | 
						
							| 61 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 62 | 61 | a1i | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  2  ∈  ℤ ) | 
						
							| 63 | 60 62 | zsubcld | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ ) | 
						
							| 64 | 59 63 | jctild | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ  ∧  0  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) | 
						
							| 65 | 1 64 | syl | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ  ∧  0  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) | 
						
							| 66 | 65 | imp | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ  ∧  0  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) | 
						
							| 67 |  | elnn0z | ⊢ ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ0  ↔  ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ  ∧  0  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) | 
						
							| 68 | 66 67 | sylibr | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ0 ) | 
						
							| 69 |  | elnn0uz | ⊢ ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ0  ↔  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 70 | 68 69 | sylib | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 71 |  | fzosplitsn | ⊢ ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ( ℤ≥ ‘ 0 )  →  ( 0 ..^ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∪  { ( ( ♯ ‘ 𝑃 )  −  2 ) } ) ) | 
						
							| 72 | 70 71 | syl | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 0 ..^ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∪  { ( ( ♯ ‘ 𝑃 )  −  2 ) } ) ) | 
						
							| 73 | 54 72 | eqtrd | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∪  { ( ( ♯ ‘ 𝑃 )  −  2 ) } ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) )  →  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∪  { ( ( ♯ ‘ 𝑃 )  −  2 ) } ) ) | 
						
							| 75 | 48 74 | raleqtrrdv | ⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) | 
						
							| 76 | 75 | ex | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) ) |