| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlklem2.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↦  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) ) ) | 
						
							| 2 |  | lencl | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 3 |  | nn0z | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℤ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℤ ) | 
						
							| 5 |  | 0red | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  0  ∈  ℝ ) | 
						
							| 6 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 7 | 6 | a1i | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  2  ∈  ℝ ) | 
						
							| 8 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 10 |  | 2pos | ⊢ 0  <  2 | 
						
							| 11 | 10 | a1i | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  0  <  2 ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  2  ≤  ( ♯ ‘ 𝑃 ) ) | 
						
							| 13 | 5 7 9 11 12 | ltletrd | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  0  <  ( ♯ ‘ 𝑃 ) ) | 
						
							| 14 |  | elnnz | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝑃 )  ∈  ℤ  ∧  0  <  ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 15 | 4 13 14 | sylanbrc | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ ) | 
						
							| 16 | 2 15 | sylan | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ ) | 
						
							| 17 |  | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ0 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ0 ) | 
						
							| 19 |  | fvex | ⊢ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } )  ∈  V | 
						
							| 20 |  | fvex | ⊢ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } )  ∈  V | 
						
							| 21 | 19 20 | ifex | ⊢ if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) )  ∈  V | 
						
							| 22 | 21 1 | fnmpti | ⊢ 𝐹  Fn  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 23 |  | ffzo0hash | ⊢ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ0  ∧  𝐹  Fn  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 24 | 18 22 23 | sylancl | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) |