| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlklem2.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↦  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) ) ) | 
						
							| 2 |  | lsw | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 4 | 1 | clwlkclwwlklem2a2 | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 5 | 4 | eqcomd | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( ♯ ‘ 𝐹 ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 7 | 3 6 | eqtr2d | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  ( lastS ‘ 𝑃 ) ) |