Description: Lemma 3 for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 21-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clwlkclwwlklem2.f | |- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
|
Assertion | clwlkclwwlklem2a3 | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P ` ( # ` F ) ) = ( lastS ` P ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkclwwlklem2.f | |- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> if ( x < ( ( # ` P ) - 2 ) , ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) , ( `' E ` { ( P ` x ) , ( P ` 0 ) } ) ) ) |
|
2 | lsw | |- ( P e. Word V -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
|
3 | 2 | adantr | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( lastS ` P ) = ( P ` ( ( # ` P ) - 1 ) ) ) |
4 | 1 | clwlkclwwlklem2a2 | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
5 | 4 | eqcomd | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( ( # ` P ) - 1 ) = ( # ` F ) ) |
6 | 5 | fveq2d | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P ` ( ( # ` P ) - 1 ) ) = ( P ` ( # ` F ) ) ) |
7 | 3 6 | eqtr2d | |- ( ( P e. Word V /\ 2 <_ ( # ` P ) ) -> ( P ` ( # ` F ) ) = ( lastS ` P ) ) |