| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlklem2.f | ⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↦  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) ) ) | 
						
							| 2 |  | breq1 | ⊢ ( 𝑥  =  𝐼  →  ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 )  ↔  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  𝐼  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝐼 ) ) | 
						
							| 4 |  | fvoveq1 | ⊢ ( 𝑥  =  𝐼  →  ( 𝑃 ‘ ( 𝑥  +  1 ) )  =  ( 𝑃 ‘ ( 𝐼  +  1 ) ) ) | 
						
							| 5 | 3 4 | preq12d | ⊢ ( 𝑥  =  𝐼  →  { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑥  =  𝐼  →  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ) | 
						
							| 7 | 3 | preq1d | ⊢ ( 𝑥  =  𝐼  →  { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ 0 ) } ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑥  =  𝐼  →  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ 0 ) } ) ) | 
						
							| 9 | 2 6 8 | ifbieq12d | ⊢ ( 𝑥  =  𝐼  →  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) )  =  if ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ 0 ) } ) ) ) | 
						
							| 10 |  | elfzolt2 | ⊢ ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) | 
						
							| 12 | 11 | iftrued | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  if ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ 0 ) } ) )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ) | 
						
							| 13 | 9 12 | sylan9eqr | ⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  ∧  𝑥  =  𝐼 )  →  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ) | 
						
							| 14 |  | nn0z | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℤ ) | 
						
							| 15 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 16 | 15 | a1i | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  2  ∈  ℤ ) | 
						
							| 17 | 14 16 | zsubcld | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ ) | 
						
							| 18 |  | peano2zm | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℤ  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℤ ) | 
						
							| 19 | 14 18 | syl | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℤ ) | 
						
							| 20 |  | 1red | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  1  ∈  ℝ ) | 
						
							| 21 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 22 | 21 | a1i | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 23 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 24 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 25 | 24 | a1i | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  1  ≤  2 ) | 
						
							| 26 | 20 22 23 25 | lesub2dd | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ≤  ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 27 |  | eluz2 | ⊢ ( ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ↔  ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ≤  ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 28 | 17 19 26 27 | syl3anbrc | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) | 
						
							| 29 |  | fzoss2 | ⊢ ( ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 31 | 30 | sselda | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) | 
						
							| 32 |  | fvexd | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } )  ∈  V ) | 
						
							| 33 | 1 13 31 32 | fvmptd2 | ⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  ( 𝐹 ‘ 𝐼 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ) |