Metamath Proof Explorer


Theorem clwlkclwwlklem2a2

Description: Lemma 2 for clwlkclwwlklem2a . (Contributed by Alexander van der Vekens, 21-Jun-2018)

Ref Expression
Hypothesis clwlkclwwlklem2.f F=x0..^P1ifx<P2E-1PxPx+1E-1PxP0
Assertion clwlkclwwlklem2a2 PWordV2PF=P1

Proof

Step Hyp Ref Expression
1 clwlkclwwlklem2.f F=x0..^P1ifx<P2E-1PxPx+1E-1PxP0
2 lencl PWordVP0
3 nn0z P0P
4 3 adantr P02PP
5 0red P02P0
6 2re 2
7 6 a1i P02P2
8 nn0re P0P
9 8 adantr P02PP
10 2pos 0<2
11 10 a1i P02P0<2
12 simpr P02P2P
13 5 7 9 11 12 ltletrd P02P0<P
14 elnnz PP0<P
15 4 13 14 sylanbrc P02PP
16 2 15 sylan PWordV2PP
17 nnm1nn0 PP10
18 16 17 syl PWordV2PP10
19 fvex E-1PxPx+1V
20 fvex E-1PxP0V
21 19 20 ifex ifx<P2E-1PxPx+1E-1PxP0V
22 21 1 fnmpti FFn0..^P1
23 ffzo0hash P10FFn0..^P1F=P1
24 18 22 23 sylancl PWordV2PF=P1