| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 |  | simpl |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 |  | simpr |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 | 7 | eqcomd |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 | 6 9 | eqtrd |  | 
						
							| 11 |  | clwwlknccat |  | 
						
							| 12 | 2 4 10 11 | syl3anc |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 13 | clwwlknwrd |  | 
						
							| 15 | 14 | adantr |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 | 13 | clwwlknwrd |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 |  | clwwlknnn |  | 
						
							| 21 |  | clwwlknlen |  | 
						
							| 22 |  | nngt0 |  | 
						
							| 23 |  | breq2 |  | 
						
							| 24 | 22 23 | syl5ibrcom |  | 
						
							| 25 | 20 21 24 | sylc |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 |  | ccatfv0 |  | 
						
							| 29 | 16 19 27 28 | syl3anc |  | 
						
							| 30 | 29 6 | eqtrd |  | 
						
							| 31 | 12 30 | jca |  | 
						
							| 32 |  | isclwwlknon |  | 
						
							| 33 |  | isclwwlknon |  | 
						
							| 34 | 32 33 | anbi12i |  | 
						
							| 35 |  | isclwwlknon |  | 
						
							| 36 | 31 34 35 | 3imtr4i |  |