| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) -> A e. ( M ClWWalksN G ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) -> A e. ( M ClWWalksN G ) ) | 
						
							| 3 |  | simpl |  |-  ( ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) -> B e. ( N ClWWalksN G ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) -> B e. ( N ClWWalksN G ) ) | 
						
							| 5 |  | simpr |  |-  ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) -> ( A ` 0 ) = X ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) -> ( A ` 0 ) = X ) | 
						
							| 7 |  | simpr |  |-  ( ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) -> ( B ` 0 ) = X ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) -> X = ( B ` 0 ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) -> X = ( B ` 0 ) ) | 
						
							| 10 | 6 9 | eqtrd |  |-  ( ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) -> ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 11 |  | clwwlknccat |  |-  ( ( A e. ( M ClWWalksN G ) /\ B e. ( N ClWWalksN G ) /\ ( A ` 0 ) = ( B ` 0 ) ) -> ( A ++ B ) e. ( ( M + N ) ClWWalksN G ) ) | 
						
							| 12 | 2 4 10 11 | syl3anc |  |-  ( ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) -> ( A ++ B ) e. ( ( M + N ) ClWWalksN G ) ) | 
						
							| 13 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 14 | 13 | clwwlknwrd |  |-  ( A e. ( M ClWWalksN G ) -> A e. Word ( Vtx ` G ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) -> A e. Word ( Vtx ` G ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) -> A e. Word ( Vtx ` G ) ) | 
						
							| 17 | 13 | clwwlknwrd |  |-  ( B e. ( N ClWWalksN G ) -> B e. Word ( Vtx ` G ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) -> B e. Word ( Vtx ` G ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) -> B e. Word ( Vtx ` G ) ) | 
						
							| 20 |  | clwwlknnn |  |-  ( A e. ( M ClWWalksN G ) -> M e. NN ) | 
						
							| 21 |  | clwwlknlen |  |-  ( A e. ( M ClWWalksN G ) -> ( # ` A ) = M ) | 
						
							| 22 |  | nngt0 |  |-  ( M e. NN -> 0 < M ) | 
						
							| 23 |  | breq2 |  |-  ( ( # ` A ) = M -> ( 0 < ( # ` A ) <-> 0 < M ) ) | 
						
							| 24 | 22 23 | syl5ibrcom |  |-  ( M e. NN -> ( ( # ` A ) = M -> 0 < ( # ` A ) ) ) | 
						
							| 25 | 20 21 24 | sylc |  |-  ( A e. ( M ClWWalksN G ) -> 0 < ( # ` A ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) -> 0 < ( # ` A ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) -> 0 < ( # ` A ) ) | 
						
							| 28 |  | ccatfv0 |  |-  ( ( A e. Word ( Vtx ` G ) /\ B e. Word ( Vtx ` G ) /\ 0 < ( # ` A ) ) -> ( ( A ++ B ) ` 0 ) = ( A ` 0 ) ) | 
						
							| 29 | 16 19 27 28 | syl3anc |  |-  ( ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) -> ( ( A ++ B ) ` 0 ) = ( A ` 0 ) ) | 
						
							| 30 | 29 6 | eqtrd |  |-  ( ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) -> ( ( A ++ B ) ` 0 ) = X ) | 
						
							| 31 | 12 30 | jca |  |-  ( ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) -> ( ( A ++ B ) e. ( ( M + N ) ClWWalksN G ) /\ ( ( A ++ B ) ` 0 ) = X ) ) | 
						
							| 32 |  | isclwwlknon |  |-  ( A e. ( X ( ClWWalksNOn ` G ) M ) <-> ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) ) | 
						
							| 33 |  | isclwwlknon |  |-  ( B e. ( X ( ClWWalksNOn ` G ) N ) <-> ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) | 
						
							| 34 | 32 33 | anbi12i |  |-  ( ( A e. ( X ( ClWWalksNOn ` G ) M ) /\ B e. ( X ( ClWWalksNOn ` G ) N ) ) <-> ( ( A e. ( M ClWWalksN G ) /\ ( A ` 0 ) = X ) /\ ( B e. ( N ClWWalksN G ) /\ ( B ` 0 ) = X ) ) ) | 
						
							| 35 |  | isclwwlknon |  |-  ( ( A ++ B ) e. ( X ( ClWWalksNOn ` G ) ( M + N ) ) <-> ( ( A ++ B ) e. ( ( M + N ) ClWWalksN G ) /\ ( ( A ++ B ) ` 0 ) = X ) ) | 
						
							| 36 | 31 34 35 | 3imtr4i |  |-  ( ( A e. ( X ( ClWWalksNOn ` G ) M ) /\ B e. ( X ( ClWWalksNOn ` G ) N ) ) -> ( A ++ B ) e. ( X ( ClWWalksNOn ` G ) ( M + N ) ) ) |