| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknon1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | clwwlknon1.c |  |-  C = ( ClWWalksNOn ` G ) | 
						
							| 3 |  | clwwlknon1.e |  |-  E = ( Edg ` G ) | 
						
							| 4 | 2 | oveqi |  |-  ( X C 1 ) = ( X ( ClWWalksNOn ` G ) 1 ) | 
						
							| 5 | 4 | a1i |  |-  ( X e. V -> ( X C 1 ) = ( X ( ClWWalksNOn ` G ) 1 ) ) | 
						
							| 6 |  | clwwlknon |  |-  ( X ( ClWWalksNOn ` G ) 1 ) = { w e. ( 1 ClWWalksN G ) | ( w ` 0 ) = X } | 
						
							| 7 | 6 | a1i |  |-  ( X e. V -> ( X ( ClWWalksNOn ` G ) 1 ) = { w e. ( 1 ClWWalksN G ) | ( w ` 0 ) = X } ) | 
						
							| 8 |  | clwwlkn1 |  |-  ( w e. ( 1 ClWWalksN G ) <-> ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 9 | 8 | anbi1i |  |-  ( ( w e. ( 1 ClWWalksN G ) /\ ( w ` 0 ) = X ) <-> ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) | 
						
							| 10 | 1 | eqcomi |  |-  ( Vtx ` G ) = V | 
						
							| 11 | 10 | wrdeqi |  |-  Word ( Vtx ` G ) = Word V | 
						
							| 12 | 11 | eleq2i |  |-  ( w e. Word ( Vtx ` G ) <-> w e. Word V ) | 
						
							| 13 | 12 | biimpi |  |-  ( w e. Word ( Vtx ` G ) -> w e. Word V ) | 
						
							| 14 | 13 | 3ad2ant2 |  |-  ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) -> w e. Word V ) | 
						
							| 15 | 14 | ad2antrl |  |-  ( ( X e. V /\ ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) -> w e. Word V ) | 
						
							| 16 | 14 | adantr |  |-  ( ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) -> w e. Word V ) | 
						
							| 17 |  | simpl1 |  |-  ( ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) -> ( # ` w ) = 1 ) | 
						
							| 18 |  | simpr |  |-  ( ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) -> ( w ` 0 ) = X ) | 
						
							| 19 | 16 17 18 | 3jca |  |-  ( ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) -> ( w e. Word V /\ ( # ` w ) = 1 /\ ( w ` 0 ) = X ) ) | 
						
							| 20 | 19 | adantl |  |-  ( ( X e. V /\ ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) -> ( w e. Word V /\ ( # ` w ) = 1 /\ ( w ` 0 ) = X ) ) | 
						
							| 21 |  | wrdl1s1 |  |-  ( X e. V -> ( w = <" X "> <-> ( w e. Word V /\ ( # ` w ) = 1 /\ ( w ` 0 ) = X ) ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( X e. V /\ ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) -> ( w = <" X "> <-> ( w e. Word V /\ ( # ` w ) = 1 /\ ( w ` 0 ) = X ) ) ) | 
						
							| 23 | 20 22 | mpbird |  |-  ( ( X e. V /\ ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) -> w = <" X "> ) | 
						
							| 24 |  | sneq |  |-  ( ( w ` 0 ) = X -> { ( w ` 0 ) } = { X } ) | 
						
							| 25 | 3 | eqcomi |  |-  ( Edg ` G ) = E | 
						
							| 26 | 25 | a1i |  |-  ( ( w ` 0 ) = X -> ( Edg ` G ) = E ) | 
						
							| 27 | 24 26 | eleq12d |  |-  ( ( w ` 0 ) = X -> ( { ( w ` 0 ) } e. ( Edg ` G ) <-> { X } e. E ) ) | 
						
							| 28 | 27 | biimpd |  |-  ( ( w ` 0 ) = X -> ( { ( w ` 0 ) } e. ( Edg ` G ) -> { X } e. E ) ) | 
						
							| 29 | 28 | a1i |  |-  ( X e. V -> ( ( w ` 0 ) = X -> ( { ( w ` 0 ) } e. ( Edg ` G ) -> { X } e. E ) ) ) | 
						
							| 30 | 29 | com13 |  |-  ( { ( w ` 0 ) } e. ( Edg ` G ) -> ( ( w ` 0 ) = X -> ( X e. V -> { X } e. E ) ) ) | 
						
							| 31 | 30 | 3ad2ant3 |  |-  ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) -> ( ( w ` 0 ) = X -> ( X e. V -> { X } e. E ) ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) -> ( X e. V -> { X } e. E ) ) | 
						
							| 33 | 32 | impcom |  |-  ( ( X e. V /\ ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) -> { X } e. E ) | 
						
							| 34 | 15 23 33 | jca32 |  |-  ( ( X e. V /\ ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) -> ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) | 
						
							| 35 |  | fveq2 |  |-  ( w = <" X "> -> ( # ` w ) = ( # ` <" X "> ) ) | 
						
							| 36 |  | s1len |  |-  ( # ` <" X "> ) = 1 | 
						
							| 37 | 35 36 | eqtrdi |  |-  ( w = <" X "> -> ( # ` w ) = 1 ) | 
						
							| 38 | 37 | ad2antrl |  |-  ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) -> ( # ` w ) = 1 ) | 
						
							| 39 | 38 | adantl |  |-  ( ( X e. V /\ ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) -> ( # ` w ) = 1 ) | 
						
							| 40 | 1 | wrdeqi |  |-  Word V = Word ( Vtx ` G ) | 
						
							| 41 | 40 | eleq2i |  |-  ( w e. Word V <-> w e. Word ( Vtx ` G ) ) | 
						
							| 42 | 41 | biimpi |  |-  ( w e. Word V -> w e. Word ( Vtx ` G ) ) | 
						
							| 43 | 42 | ad2antrl |  |-  ( ( X e. V /\ ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) -> w e. Word ( Vtx ` G ) ) | 
						
							| 44 |  | fveq1 |  |-  ( w = <" X "> -> ( w ` 0 ) = ( <" X "> ` 0 ) ) | 
						
							| 45 |  | s1fv |  |-  ( X e. V -> ( <" X "> ` 0 ) = X ) | 
						
							| 46 | 44 45 | sylan9eq |  |-  ( ( w = <" X "> /\ X e. V ) -> ( w ` 0 ) = X ) | 
						
							| 47 | 46 | eqcomd |  |-  ( ( w = <" X "> /\ X e. V ) -> X = ( w ` 0 ) ) | 
						
							| 48 | 47 | sneqd |  |-  ( ( w = <" X "> /\ X e. V ) -> { X } = { ( w ` 0 ) } ) | 
						
							| 49 | 3 | a1i |  |-  ( ( w = <" X "> /\ X e. V ) -> E = ( Edg ` G ) ) | 
						
							| 50 | 48 49 | eleq12d |  |-  ( ( w = <" X "> /\ X e. V ) -> ( { X } e. E <-> { ( w ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 51 | 50 | biimpd |  |-  ( ( w = <" X "> /\ X e. V ) -> ( { X } e. E -> { ( w ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 52 | 51 | impancom |  |-  ( ( w = <" X "> /\ { X } e. E ) -> ( X e. V -> { ( w ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 53 | 52 | adantl |  |-  ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) -> ( X e. V -> { ( w ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 54 | 53 | impcom |  |-  ( ( X e. V /\ ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) -> { ( w ` 0 ) } e. ( Edg ` G ) ) | 
						
							| 55 | 39 43 54 | 3jca |  |-  ( ( X e. V /\ ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) -> ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) ) | 
						
							| 56 | 46 | ex |  |-  ( w = <" X "> -> ( X e. V -> ( w ` 0 ) = X ) ) | 
						
							| 57 | 56 | ad2antrl |  |-  ( ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) -> ( X e. V -> ( w ` 0 ) = X ) ) | 
						
							| 58 | 57 | impcom |  |-  ( ( X e. V /\ ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) -> ( w ` 0 ) = X ) | 
						
							| 59 | 55 58 | jca |  |-  ( ( X e. V /\ ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) -> ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) ) | 
						
							| 60 | 34 59 | impbida |  |-  ( X e. V -> ( ( ( ( # ` w ) = 1 /\ w e. Word ( Vtx ` G ) /\ { ( w ` 0 ) } e. ( Edg ` G ) ) /\ ( w ` 0 ) = X ) <-> ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) ) | 
						
							| 61 | 9 60 | bitrid |  |-  ( X e. V -> ( ( w e. ( 1 ClWWalksN G ) /\ ( w ` 0 ) = X ) <-> ( w e. Word V /\ ( w = <" X "> /\ { X } e. E ) ) ) ) | 
						
							| 62 | 61 | rabbidva2 |  |-  ( X e. V -> { w e. ( 1 ClWWalksN G ) | ( w ` 0 ) = X } = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } ) | 
						
							| 63 | 5 7 62 | 3eqtrd |  |-  ( X e. V -> ( X C 1 ) = { w e. Word V | ( w = <" X "> /\ { X } e. E ) } ) |