| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknon1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | clwwlknon1.c | ⊢ 𝐶  =  ( ClWWalksNOn ‘ 𝐺 ) | 
						
							| 3 |  | clwwlknon1.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 | 2 | oveqi | ⊢ ( 𝑋 𝐶 1 )  =  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋 𝐶 1 )  =  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) | 
						
							| 6 |  | clwwlknon | ⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  { 𝑤  ∈  ( 1  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  { 𝑤  ∈  ( 1  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) | 
						
							| 8 |  | clwwlkn1 | ⊢ ( 𝑤  ∈  ( 1  ClWWalksN  𝐺 )  ↔  ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 9 | 8 | anbi1i | ⊢ ( ( 𝑤  ∈  ( 1  ClWWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 10 | 1 | eqcomi | ⊢ ( Vtx ‘ 𝐺 )  =  𝑉 | 
						
							| 11 | 10 | wrdeqi | ⊢ Word  ( Vtx ‘ 𝐺 )  =  Word  𝑉 | 
						
							| 12 | 11 | eleq2i | ⊢ ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ↔  𝑤  ∈  Word  𝑉 ) | 
						
							| 13 | 12 | biimpi | ⊢ ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  →  𝑤  ∈  Word  𝑉 ) | 
						
							| 14 | 13 | 3ad2ant2 | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  𝑤  ∈  Word  𝑉 ) | 
						
							| 15 | 14 | ad2antrl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) )  →  𝑤  ∈  Word  𝑉 ) | 
						
							| 16 | 14 | adantr | ⊢ ( ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  →  𝑤  ∈  Word  𝑉 ) | 
						
							| 17 |  | simpl1 | ⊢ ( ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  →  ( ♯ ‘ 𝑤 )  =  1 ) | 
						
							| 18 |  | simpr | ⊢ ( ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  →  ( 𝑤 ‘ 0 )  =  𝑋 ) | 
						
							| 19 | 16 17 18 | 3jca | ⊢ ( ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  →  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  1  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) )  →  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  1  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 21 |  | wrdl1s1 | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑤  =  〈“ 𝑋 ”〉  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  1  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) )  →  ( 𝑤  =  〈“ 𝑋 ”〉  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑤 )  =  1  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) ) | 
						
							| 23 | 20 22 | mpbird | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) )  →  𝑤  =  〈“ 𝑋 ”〉 ) | 
						
							| 24 |  | sneq | ⊢ ( ( 𝑤 ‘ 0 )  =  𝑋  →  { ( 𝑤 ‘ 0 ) }  =  { 𝑋 } ) | 
						
							| 25 | 3 | eqcomi | ⊢ ( Edg ‘ 𝐺 )  =  𝐸 | 
						
							| 26 | 25 | a1i | ⊢ ( ( 𝑤 ‘ 0 )  =  𝑋  →  ( Edg ‘ 𝐺 )  =  𝐸 ) | 
						
							| 27 | 24 26 | eleq12d | ⊢ ( ( 𝑤 ‘ 0 )  =  𝑋  →  ( { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { 𝑋 }  ∈  𝐸 ) ) | 
						
							| 28 | 27 | biimpd | ⊢ ( ( 𝑤 ‘ 0 )  =  𝑋  →  ( { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 )  →  { 𝑋 }  ∈  𝐸 ) ) | 
						
							| 29 | 28 | a1i | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑤 ‘ 0 )  =  𝑋  →  ( { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 )  →  { 𝑋 }  ∈  𝐸 ) ) ) | 
						
							| 30 | 29 | com13 | ⊢ ( { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 )  →  ( ( 𝑤 ‘ 0 )  =  𝑋  →  ( 𝑋  ∈  𝑉  →  { 𝑋 }  ∈  𝐸 ) ) ) | 
						
							| 31 | 30 | 3ad2ant3 | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( ( 𝑤 ‘ 0 )  =  𝑋  →  ( 𝑋  ∈  𝑉  →  { 𝑋 }  ∈  𝐸 ) ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  →  ( 𝑋  ∈  𝑉  →  { 𝑋 }  ∈  𝐸 ) ) | 
						
							| 33 | 32 | impcom | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) )  →  { 𝑋 }  ∈  𝐸 ) | 
						
							| 34 | 15 23 33 | jca32 | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) )  →  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑤  =  〈“ 𝑋 ”〉  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 〈“ 𝑋 ”〉 ) ) | 
						
							| 36 |  | s1len | ⊢ ( ♯ ‘ 〈“ 𝑋 ”〉 )  =  1 | 
						
							| 37 | 35 36 | eqtrdi | ⊢ ( 𝑤  =  〈“ 𝑋 ”〉  →  ( ♯ ‘ 𝑤 )  =  1 ) | 
						
							| 38 | 37 | ad2antrl | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) )  →  ( ♯ ‘ 𝑤 )  =  1 ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) ) )  →  ( ♯ ‘ 𝑤 )  =  1 ) | 
						
							| 40 | 1 | wrdeqi | ⊢ Word  𝑉  =  Word  ( Vtx ‘ 𝐺 ) | 
						
							| 41 | 40 | eleq2i | ⊢ ( 𝑤  ∈  Word  𝑉  ↔  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 42 | 41 | biimpi | ⊢ ( 𝑤  ∈  Word  𝑉  →  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 43 | 42 | ad2antrl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) ) )  →  𝑤  ∈  Word  ( Vtx ‘ 𝐺 ) ) | 
						
							| 44 |  | fveq1 | ⊢ ( 𝑤  =  〈“ 𝑋 ”〉  →  ( 𝑤 ‘ 0 )  =  ( 〈“ 𝑋 ”〉 ‘ 0 ) ) | 
						
							| 45 |  | s1fv | ⊢ ( 𝑋  ∈  𝑉  →  ( 〈“ 𝑋 ”〉 ‘ 0 )  =  𝑋 ) | 
						
							| 46 | 44 45 | sylan9eq | ⊢ ( ( 𝑤  =  〈“ 𝑋 ”〉  ∧  𝑋  ∈  𝑉 )  →  ( 𝑤 ‘ 0 )  =  𝑋 ) | 
						
							| 47 | 46 | eqcomd | ⊢ ( ( 𝑤  =  〈“ 𝑋 ”〉  ∧  𝑋  ∈  𝑉 )  →  𝑋  =  ( 𝑤 ‘ 0 ) ) | 
						
							| 48 | 47 | sneqd | ⊢ ( ( 𝑤  =  〈“ 𝑋 ”〉  ∧  𝑋  ∈  𝑉 )  →  { 𝑋 }  =  { ( 𝑤 ‘ 0 ) } ) | 
						
							| 49 | 3 | a1i | ⊢ ( ( 𝑤  =  〈“ 𝑋 ”〉  ∧  𝑋  ∈  𝑉 )  →  𝐸  =  ( Edg ‘ 𝐺 ) ) | 
						
							| 50 | 48 49 | eleq12d | ⊢ ( ( 𝑤  =  〈“ 𝑋 ”〉  ∧  𝑋  ∈  𝑉 )  →  ( { 𝑋 }  ∈  𝐸  ↔  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 51 | 50 | biimpd | ⊢ ( ( 𝑤  =  〈“ 𝑋 ”〉  ∧  𝑋  ∈  𝑉 )  →  ( { 𝑋 }  ∈  𝐸  →  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 52 | 51 | impancom | ⊢ ( ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 )  →  ( 𝑋  ∈  𝑉  →  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) )  →  ( 𝑋  ∈  𝑉  →  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 54 | 53 | impcom | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) ) )  →  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 55 | 39 43 54 | 3jca | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) ) )  →  ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 56 | 46 | ex | ⊢ ( 𝑤  =  〈“ 𝑋 ”〉  →  ( 𝑋  ∈  𝑉  →  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 57 | 56 | ad2antrl | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) )  →  ( 𝑋  ∈  𝑉  →  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 58 | 57 | impcom | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) ) )  →  ( 𝑤 ‘ 0 )  =  𝑋 ) | 
						
							| 59 | 55 58 | jca | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) ) )  →  ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 60 | 34 59 | impbida | ⊢ ( 𝑋  ∈  𝑉  →  ( ( ( ( ♯ ‘ 𝑤 )  =  1  ∧  𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  { ( 𝑤 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) ) ) ) | 
						
							| 61 | 9 60 | bitrid | ⊢ ( 𝑋  ∈  𝑉  →  ( ( 𝑤  ∈  ( 1  ClWWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) ) ) ) | 
						
							| 62 | 61 | rabbidva2 | ⊢ ( 𝑋  ∈  𝑉  →  { 𝑤  ∈  ( 1  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  =  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) } ) | 
						
							| 63 | 5 7 62 | 3eqtrd | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋 𝐶 1 )  =  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) } ) |