| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlknon1.v |
|
| 2 |
|
clwwlknon1.c |
|
| 3 |
|
clwwlknon1.e |
|
| 4 |
2
|
oveqi |
|
| 5 |
4
|
a1i |
|
| 6 |
|
clwwlknon |
|
| 7 |
6
|
a1i |
|
| 8 |
|
clwwlkn1 |
|
| 9 |
8
|
anbi1i |
|
| 10 |
1
|
eqcomi |
|
| 11 |
10
|
wrdeqi |
|
| 12 |
11
|
eleq2i |
|
| 13 |
12
|
biimpi |
|
| 14 |
13
|
3ad2ant2 |
|
| 15 |
14
|
ad2antrl |
|
| 16 |
14
|
adantr |
|
| 17 |
|
simpl1 |
|
| 18 |
|
simpr |
|
| 19 |
16 17 18
|
3jca |
|
| 20 |
19
|
adantl |
|
| 21 |
|
wrdl1s1 |
|
| 22 |
21
|
adantr |
|
| 23 |
20 22
|
mpbird |
|
| 24 |
|
sneq |
|
| 25 |
3
|
eqcomi |
|
| 26 |
25
|
a1i |
|
| 27 |
24 26
|
eleq12d |
|
| 28 |
27
|
biimpd |
|
| 29 |
28
|
a1i |
|
| 30 |
29
|
com13 |
|
| 31 |
30
|
3ad2ant3 |
|
| 32 |
31
|
imp |
|
| 33 |
32
|
impcom |
|
| 34 |
15 23 33
|
jca32 |
|
| 35 |
|
fveq2 |
|
| 36 |
|
s1len |
|
| 37 |
35 36
|
eqtrdi |
|
| 38 |
37
|
ad2antrl |
|
| 39 |
38
|
adantl |
|
| 40 |
1
|
wrdeqi |
|
| 41 |
40
|
eleq2i |
|
| 42 |
41
|
biimpi |
|
| 43 |
42
|
ad2antrl |
|
| 44 |
|
fveq1 |
|
| 45 |
|
s1fv |
|
| 46 |
44 45
|
sylan9eq |
|
| 47 |
46
|
eqcomd |
|
| 48 |
47
|
sneqd |
|
| 49 |
3
|
a1i |
|
| 50 |
48 49
|
eleq12d |
|
| 51 |
50
|
biimpd |
|
| 52 |
51
|
impancom |
|
| 53 |
52
|
adantl |
|
| 54 |
53
|
impcom |
|
| 55 |
39 43 54
|
3jca |
|
| 56 |
46
|
ex |
|
| 57 |
56
|
ad2antrl |
|
| 58 |
57
|
impcom |
|
| 59 |
55 58
|
jca |
|
| 60 |
34 59
|
impbida |
|
| 61 |
9 60
|
bitrid |
|
| 62 |
61
|
rabbidva2 |
|
| 63 |
5 7 62
|
3eqtrd |
|