Metamath Proof Explorer


Theorem clwwlknon1loop

Description: If there is a loop at vertex X , the set of (closed) walks on X of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of X . (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Feb-2022) (Proof shortened by AV, 25-Mar-2022)

Ref Expression
Hypotheses clwwlknon1.v V=VtxG
clwwlknon1.c C=ClWWalksNOnG
clwwlknon1.e E=EdgG
Assertion clwwlknon1loop XVXEXC1=⟨“X”⟩

Proof

Step Hyp Ref Expression
1 clwwlknon1.v V=VtxG
2 clwwlknon1.c C=ClWWalksNOnG
3 clwwlknon1.e E=EdgG
4 simprl wWordVw=⟨“X”⟩XEw=⟨“X”⟩
5 s1cl XV⟨“X”⟩WordV
6 5 adantr XVXE⟨“X”⟩WordV
7 6 adantr XVXEw=⟨“X”⟩⟨“X”⟩WordV
8 eleq1 w=⟨“X”⟩wWordV⟨“X”⟩WordV
9 8 adantl XVXEw=⟨“X”⟩wWordV⟨“X”⟩WordV
10 7 9 mpbird XVXEw=⟨“X”⟩wWordV
11 simpr XVXEXE
12 11 anim1ci XVXEw=⟨“X”⟩w=⟨“X”⟩XE
13 10 12 jca XVXEw=⟨“X”⟩wWordVw=⟨“X”⟩XE
14 13 ex XVXEw=⟨“X”⟩wWordVw=⟨“X”⟩XE
15 4 14 impbid2 XVXEwWordVw=⟨“X”⟩XEw=⟨“X”⟩
16 15 alrimiv XVXEwwWordVw=⟨“X”⟩XEw=⟨“X”⟩
17 1 2 3 clwwlknon1 XVXC1=wWordV|w=⟨“X”⟩XE
18 17 eqeq1d XVXC1=⟨“X”⟩wWordV|w=⟨“X”⟩XE=⟨“X”⟩
19 18 adantr XVXEXC1=⟨“X”⟩wWordV|w=⟨“X”⟩XE=⟨“X”⟩
20 rabeqsn wWordV|w=⟨“X”⟩XE=⟨“X”⟩wwWordVw=⟨“X”⟩XEw=⟨“X”⟩
21 19 20 bitrdi XVXEXC1=⟨“X”⟩wwWordVw=⟨“X”⟩XEw=⟨“X”⟩
22 16 21 mpbird XVXEXC1=⟨“X”⟩