Metamath Proof Explorer


Theorem clwwlknon1nloop

Description: If there is no loop at vertex X , the set of (closed) walks on X of length 1 as words over the set of vertices is empty. (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Mar-2022)

Ref Expression
Hypotheses clwwlknon1.v V = Vtx G
clwwlknon1.c C = ClWWalksNOn G
clwwlknon1.e E = Edg G
Assertion clwwlknon1nloop X E X C 1 =

Proof

Step Hyp Ref Expression
1 clwwlknon1.v V = Vtx G
2 clwwlknon1.c C = ClWWalksNOn G
3 clwwlknon1.e E = Edg G
4 1 2 3 clwwlknon1 X V X C 1 = w Word V | w = ⟨“ X ”⟩ X E
5 4 adantr X V X E X C 1 = w Word V | w = ⟨“ X ”⟩ X E
6 df-nel X E ¬ X E
7 6 biimpi X E ¬ X E
8 7 olcd X E ¬ w = ⟨“ X ”⟩ ¬ X E
9 8 ad2antlr X V X E w Word V ¬ w = ⟨“ X ”⟩ ¬ X E
10 ianor ¬ w = ⟨“ X ”⟩ X E ¬ w = ⟨“ X ”⟩ ¬ X E
11 9 10 sylibr X V X E w Word V ¬ w = ⟨“ X ”⟩ X E
12 11 ralrimiva X V X E w Word V ¬ w = ⟨“ X ”⟩ X E
13 rabeq0 w Word V | w = ⟨“ X ”⟩ X E = w Word V ¬ w = ⟨“ X ”⟩ X E
14 12 13 sylibr X V X E w Word V | w = ⟨“ X ”⟩ X E =
15 5 14 eqtrd X V X E X C 1 =
16 2 oveqi X C 1 = X ClWWalksNOn G 1
17 1 eleq2i X V X Vtx G
18 17 notbii ¬ X V ¬ X Vtx G
19 18 biimpi ¬ X V ¬ X Vtx G
20 19 intnanrd ¬ X V ¬ X Vtx G 1
21 clwwlknon0 ¬ X Vtx G 1 X ClWWalksNOn G 1 =
22 20 21 syl ¬ X V X ClWWalksNOn G 1 =
23 16 22 eqtrid ¬ X V X C 1 =
24 23 adantr ¬ X V X E X C 1 =
25 15 24 pm2.61ian X E X C 1 =