| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknon1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | clwwlknon1.c | ⊢ 𝐶  =  ( ClWWalksNOn ‘ 𝐺 ) | 
						
							| 3 |  | clwwlknon1.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | clwwlknon1 | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋 𝐶 1 )  =  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) } ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  { 𝑋 }  ∉  𝐸 )  →  ( 𝑋 𝐶 1 )  =  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) } ) | 
						
							| 6 |  | df-nel | ⊢ ( { 𝑋 }  ∉  𝐸  ↔  ¬  { 𝑋 }  ∈  𝐸 ) | 
						
							| 7 | 6 | biimpi | ⊢ ( { 𝑋 }  ∉  𝐸  →  ¬  { 𝑋 }  ∈  𝐸 ) | 
						
							| 8 | 7 | olcd | ⊢ ( { 𝑋 }  ∉  𝐸  →  ( ¬  𝑤  =  〈“ 𝑋 ”〉  ∨  ¬  { 𝑋 }  ∈  𝐸 ) ) | 
						
							| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  { 𝑋 }  ∉  𝐸 )  ∧  𝑤  ∈  Word  𝑉 )  →  ( ¬  𝑤  =  〈“ 𝑋 ”〉  ∨  ¬  { 𝑋 }  ∈  𝐸 ) ) | 
						
							| 10 |  | ianor | ⊢ ( ¬  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 )  ↔  ( ¬  𝑤  =  〈“ 𝑋 ”〉  ∨  ¬  { 𝑋 }  ∈  𝐸 ) ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  { 𝑋 }  ∉  𝐸 )  ∧  𝑤  ∈  Word  𝑉 )  →  ¬  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  { 𝑋 }  ∉  𝐸 )  →  ∀ 𝑤  ∈  Word  𝑉 ¬  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) ) | 
						
							| 13 |  | rabeq0 | ⊢ ( { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) }  =  ∅  ↔  ∀ 𝑤  ∈  Word  𝑉 ¬  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  { 𝑋 }  ∉  𝐸 )  →  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  =  〈“ 𝑋 ”〉  ∧  { 𝑋 }  ∈  𝐸 ) }  =  ∅ ) | 
						
							| 15 | 5 14 | eqtrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  { 𝑋 }  ∉  𝐸 )  →  ( 𝑋 𝐶 1 )  =  ∅ ) | 
						
							| 16 | 2 | oveqi | ⊢ ( 𝑋 𝐶 1 )  =  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) | 
						
							| 17 | 1 | eleq2i | ⊢ ( 𝑋  ∈  𝑉  ↔  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 18 | 17 | notbii | ⊢ ( ¬  𝑋  ∈  𝑉  ↔  ¬  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 19 | 18 | biimpi | ⊢ ( ¬  𝑋  ∈  𝑉  →  ¬  𝑋  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 20 | 19 | intnanrd | ⊢ ( ¬  𝑋  ∈  𝑉  →  ¬  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  1  ∈  ℕ ) ) | 
						
							| 21 |  | clwwlknon0 | ⊢ ( ¬  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  1  ∈  ℕ )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  ∅ ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ¬  𝑋  ∈  𝑉  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )  =  ∅ ) | 
						
							| 23 | 16 22 | eqtrid | ⊢ ( ¬  𝑋  ∈  𝑉  →  ( 𝑋 𝐶 1 )  =  ∅ ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( ¬  𝑋  ∈  𝑉  ∧  { 𝑋 }  ∉  𝐸 )  →  ( 𝑋 𝐶 1 )  =  ∅ ) | 
						
							| 25 | 15 24 | pm2.61ian | ⊢ ( { 𝑋 }  ∉  𝐸  →  ( 𝑋 𝐶 1 )  =  ∅ ) |