| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) ) |
| 2 |
|
clwwlk0on0 |
⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) = ∅ |
| 3 |
1 2
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ ) |
| 4 |
3
|
a1d |
⊢ ( 𝑁 = 0 → ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ ) ) |
| 5 |
|
simprl |
⊢ ( ( 𝑁 ≠ 0 ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) ) → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
| 6 |
|
elnnne0 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) |
| 7 |
6
|
simplbi2 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ≠ 0 → 𝑁 ∈ ℕ ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ≠ 0 → 𝑁 ∈ ℕ ) ) |
| 9 |
8
|
impcom |
⊢ ( ( 𝑁 ≠ 0 ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) ) → 𝑁 ∈ ℕ ) |
| 10 |
5 9
|
jca |
⊢ ( ( 𝑁 ≠ 0 ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) ) |
| 11 |
10
|
stoic1a |
⊢ ( ( 𝑁 ≠ 0 ∧ ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) ) → ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) ) |
| 12 |
|
clwwlknonmpo |
⊢ ( ClWWalksNOn ‘ 𝐺 ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) |
| 13 |
12
|
mpondm0 |
⊢ ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ ) |
| 14 |
11 13
|
syl |
⊢ ( ( 𝑁 ≠ 0 ∧ ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ ) |
| 15 |
14
|
ex |
⊢ ( 𝑁 ≠ 0 → ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ ) ) |
| 16 |
4 15
|
pm2.61ine |
⊢ ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ ) |