Metamath Proof Explorer


Theorem clwwlknon0

Description: Sufficient conditions for ClWWalksNOn to be empty. (Contributed by AV, 25-Mar-2022)

Ref Expression
Assertion clwwlknon0 ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑁 = 0 → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) )
2 clwwlk0on0 ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) = ∅
3 1 2 eqtrdi ( 𝑁 = 0 → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ )
4 3 a1d ( 𝑁 = 0 → ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ ) )
5 simprl ( ( 𝑁 ≠ 0 ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) ) → 𝑋 ∈ ( Vtx ‘ 𝐺 ) )
6 elnnne0 ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0𝑁 ≠ 0 ) )
7 6 simplbi2 ( 𝑁 ∈ ℕ0 → ( 𝑁 ≠ 0 → 𝑁 ∈ ℕ ) )
8 7 adantl ( ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ≠ 0 → 𝑁 ∈ ℕ ) )
9 8 impcom ( ( 𝑁 ≠ 0 ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) ) → 𝑁 ∈ ℕ )
10 5 9 jca ( ( 𝑁 ≠ 0 ∧ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) )
11 10 stoic1a ( ( 𝑁 ≠ 0 ∧ ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) ) → ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) )
12 clwwlknonmpo ( ClWWalksNOn ‘ 𝐺 ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } )
13 12 mpondm0 ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ )
14 11 13 syl ( ( 𝑁 ≠ 0 ∧ ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ )
15 14 ex ( 𝑁 ≠ 0 → ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ ) )
16 4 15 pm2.61ine ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ )