| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 2 |  | eqidd | ⊢ ( 𝑔  =  𝐺  →  ℕ0  =  ℕ0 ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑛  ClWWalksN  𝑔 )  =  ( 𝑛  ClWWalksN  𝐺 ) ) | 
						
							| 4 | 3 | rabeqdv | ⊢ ( 𝑔  =  𝐺  →  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝑔 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 }  =  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) | 
						
							| 5 | 1 2 4 | mpoeq123dv | ⊢ ( 𝑔  =  𝐺  →  ( 𝑣  ∈  ( Vtx ‘ 𝑔 ) ,  𝑛  ∈  ℕ0  ↦  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝑔 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } )  =  ( 𝑣  ∈  ( Vtx ‘ 𝐺 ) ,  𝑛  ∈  ℕ0  ↦  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) | 
						
							| 6 |  | df-clwwlknon | ⊢ ClWWalksNOn  =  ( 𝑔  ∈  V  ↦  ( 𝑣  ∈  ( Vtx ‘ 𝑔 ) ,  𝑛  ∈  ℕ0  ↦  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝑔 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) | 
						
							| 7 |  | fvex | ⊢ ( Vtx ‘ 𝐺 )  ∈  V | 
						
							| 8 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 9 | 7 8 | mpoex | ⊢ ( 𝑣  ∈  ( Vtx ‘ 𝐺 ) ,  𝑛  ∈  ℕ0  ↦  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } )  ∈  V | 
						
							| 10 | 5 6 9 | fvmpt | ⊢ ( 𝐺  ∈  V  →  ( ClWWalksNOn ‘ 𝐺 )  =  ( 𝑣  ∈  ( Vtx ‘ 𝐺 ) ,  𝑛  ∈  ℕ0  ↦  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) | 
						
							| 11 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( ClWWalksNOn ‘ 𝐺 )  =  ∅ ) | 
						
							| 12 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( Vtx ‘ 𝐺 )  =  ∅ ) | 
						
							| 13 | 12 | orcd | ⊢ ( ¬  𝐺  ∈  V  →  ( ( Vtx ‘ 𝐺 )  =  ∅  ∨  ℕ0  =  ∅ ) ) | 
						
							| 14 |  | 0mpo0 | ⊢ ( ( ( Vtx ‘ 𝐺 )  =  ∅  ∨  ℕ0  =  ∅ )  →  ( 𝑣  ∈  ( Vtx ‘ 𝐺 ) ,  𝑛  ∈  ℕ0  ↦  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } )  =  ∅ ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑣  ∈  ( Vtx ‘ 𝐺 ) ,  𝑛  ∈  ℕ0  ↦  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } )  =  ∅ ) | 
						
							| 16 | 11 15 | eqtr4d | ⊢ ( ¬  𝐺  ∈  V  →  ( ClWWalksNOn ‘ 𝐺 )  =  ( 𝑣  ∈  ( Vtx ‘ 𝐺 ) ,  𝑛  ∈  ℕ0  ↦  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) | 
						
							| 17 | 10 16 | pm2.61i | ⊢ ( ClWWalksNOn ‘ 𝐺 )  =  ( 𝑣  ∈  ( Vtx ‘ 𝐺 ) ,  𝑛  ∈  ℕ0  ↦  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) |