Metamath Proof Explorer


Theorem clwwlknonmpo

Description: ( ClWWalksNOnG ) is an operator mapping a vertex v and a nonnegative integer n to the set of closed walks on v of length n as words over the set of vertices in a graph G . (Contributed by AV, 25-Feb-2022) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Assertion clwwlknonmpo ( ClWWalksNOn ‘ 𝐺 ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) )
2 eqidd ( 𝑔 = 𝐺 → ℕ0 = ℕ0 )
3 oveq2 ( 𝑔 = 𝐺 → ( 𝑛 ClWWalksN 𝑔 ) = ( 𝑛 ClWWalksN 𝐺 ) )
4 3 rabeqdv ( 𝑔 = 𝐺 → { 𝑤 ∈ ( 𝑛 ClWWalksN 𝑔 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } = { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } )
5 1 2 4 mpoeq123dv ( 𝑔 = 𝐺 → ( 𝑣 ∈ ( Vtx ‘ 𝑔 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝑔 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) )
6 df-clwwlknon ClWWalksNOn = ( 𝑔 ∈ V ↦ ( 𝑣 ∈ ( Vtx ‘ 𝑔 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝑔 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) )
7 fvex ( Vtx ‘ 𝐺 ) ∈ V
8 nn0ex 0 ∈ V
9 7 8 mpoex ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ∈ V
10 5 6 9 fvmpt ( 𝐺 ∈ V → ( ClWWalksNOn ‘ 𝐺 ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) )
11 fvprc ( ¬ 𝐺 ∈ V → ( ClWWalksNOn ‘ 𝐺 ) = ∅ )
12 fvprc ( ¬ 𝐺 ∈ V → ( Vtx ‘ 𝐺 ) = ∅ )
13 12 orcd ( ¬ 𝐺 ∈ V → ( ( Vtx ‘ 𝐺 ) = ∅ ∨ ℕ0 = ∅ ) )
14 0mpo0 ( ( ( Vtx ‘ 𝐺 ) = ∅ ∨ ℕ0 = ∅ ) → ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) = ∅ )
15 13 14 syl ( ¬ 𝐺 ∈ V → ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) = ∅ )
16 11 15 eqtr4d ( ¬ 𝐺 ∈ V → ( ClWWalksNOn ‘ 𝐺 ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) )
17 10 16 pm2.61i ( ClWWalksNOn ‘ 𝐺 ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } )