Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
2 |
|
eqidd |
|- ( g = G -> NN0 = NN0 ) |
3 |
|
oveq2 |
|- ( g = G -> ( n ClWWalksN g ) = ( n ClWWalksN G ) ) |
4 |
3
|
rabeqdv |
|- ( g = G -> { w e. ( n ClWWalksN g ) | ( w ` 0 ) = v } = { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) |
5 |
1 2 4
|
mpoeq123dv |
|- ( g = G -> ( v e. ( Vtx ` g ) , n e. NN0 |-> { w e. ( n ClWWalksN g ) | ( w ` 0 ) = v } ) = ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) ) |
6 |
|
df-clwwlknon |
|- ClWWalksNOn = ( g e. _V |-> ( v e. ( Vtx ` g ) , n e. NN0 |-> { w e. ( n ClWWalksN g ) | ( w ` 0 ) = v } ) ) |
7 |
|
fvex |
|- ( Vtx ` G ) e. _V |
8 |
|
nn0ex |
|- NN0 e. _V |
9 |
7 8
|
mpoex |
|- ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) e. _V |
10 |
5 6 9
|
fvmpt |
|- ( G e. _V -> ( ClWWalksNOn ` G ) = ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) ) |
11 |
|
fvprc |
|- ( -. G e. _V -> ( ClWWalksNOn ` G ) = (/) ) |
12 |
|
fvprc |
|- ( -. G e. _V -> ( Vtx ` G ) = (/) ) |
13 |
12
|
orcd |
|- ( -. G e. _V -> ( ( Vtx ` G ) = (/) \/ NN0 = (/) ) ) |
14 |
|
0mpo0 |
|- ( ( ( Vtx ` G ) = (/) \/ NN0 = (/) ) -> ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) = (/) ) |
15 |
13 14
|
syl |
|- ( -. G e. _V -> ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) = (/) ) |
16 |
11 15
|
eqtr4d |
|- ( -. G e. _V -> ( ClWWalksNOn ` G ) = ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) ) |
17 |
10 16
|
pm2.61i |
|- ( ClWWalksNOn ` G ) = ( v e. ( Vtx ` G ) , n e. NN0 |-> { w e. ( n ClWWalksN G ) | ( w ` 0 ) = v } ) |