| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknonfin.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | clwwlknon | ⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  =  { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } | 
						
							| 3 | 1 | eleq1i | ⊢ ( 𝑉  ∈  Fin  ↔  ( Vtx ‘ 𝐺 )  ∈  Fin ) | 
						
							| 4 |  | clwwlknfi | ⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( 𝑁  ClWWalksN  𝐺 )  ∈  Fin ) | 
						
							| 5 | 3 4 | sylbi | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑁  ClWWalksN  𝐺 )  ∈  Fin ) | 
						
							| 6 |  | rabfi | ⊢ ( ( 𝑁  ClWWalksN  𝐺 )  ∈  Fin  →  { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∈  Fin ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑉  ∈  Fin  →  { 𝑤  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∈  Fin ) | 
						
							| 8 | 2 7 | eqeltrid | ⊢ ( 𝑉  ∈  Fin  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ∈  Fin ) |