Metamath Proof Explorer


Theorem clwwlknonfin

Description: In a finite graph G , the set of closed walks on vertex X of length N is also finite. (Contributed by Alexander van der Vekens, 26-Sep-2018) (Revised by AV, 25-Feb-2022) (Proof shortened by AV, 24-Mar-2022)

Ref Expression
Hypothesis clwwlknonfin.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion clwwlknonfin ( 𝑉 ∈ Fin → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 clwwlknonfin.v 𝑉 = ( Vtx ‘ 𝐺 )
2 clwwlknon ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 }
3 1 eleq1i ( 𝑉 ∈ Fin ↔ ( Vtx ‘ 𝐺 ) ∈ Fin )
4 clwwlknfi ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 ClWWalksN 𝐺 ) ∈ Fin )
5 3 4 sylbi ( 𝑉 ∈ Fin → ( 𝑁 ClWWalksN 𝐺 ) ∈ Fin )
6 rabfi ( ( 𝑁 ClWWalksN 𝐺 ) ∈ Fin → { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∈ Fin )
7 5 6 syl ( 𝑉 ∈ Fin → { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∈ Fin )
8 2 7 eqeltrid ( 𝑉 ∈ Fin → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ∈ Fin )