| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq2 | ⊢ ( 𝑣  =  𝑋  →  ( ( 𝑤 ‘ 0 )  =  𝑣  ↔  ( 𝑤 ‘ 0 )  =  𝑋 ) ) | 
						
							| 2 | 1 | rabbidv | ⊢ ( 𝑣  =  𝑋  →  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 }  =  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑛  =  0  →  ( 𝑛  ClWWalksN  𝐺 )  =  ( 0  ClWWalksN  𝐺 ) ) | 
						
							| 4 |  | clwwlkn0 | ⊢ ( 0  ClWWalksN  𝐺 )  =  ∅ | 
						
							| 5 | 3 4 | eqtrdi | ⊢ ( 𝑛  =  0  →  ( 𝑛  ClWWalksN  𝐺 )  =  ∅ ) | 
						
							| 6 | 5 | rabeqdv | ⊢ ( 𝑛  =  0  →  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  =  { 𝑤  ∈  ∅  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) | 
						
							| 7 |  | clwwlknonmpo | ⊢ ( ClWWalksNOn ‘ 𝐺 )  =  ( 𝑣  ∈  ( Vtx ‘ 𝐺 ) ,  𝑛  ∈  ℕ0  ↦  { 𝑤  ∈  ( 𝑛  ClWWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) | 
						
							| 8 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 9 | 8 | rabex | ⊢ { 𝑤  ∈  ∅  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∈  V | 
						
							| 10 | 2 6 7 9 | ovmpo | ⊢ ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  0  ∈  ℕ0 )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 )  =  { 𝑤  ∈  ∅  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } ) | 
						
							| 11 |  | rab0 | ⊢ { 𝑤  ∈  ∅  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  =  ∅ | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  0  ∈  ℕ0 )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 )  =  ∅ ) | 
						
							| 13 | 7 | mpondm0 | ⊢ ( ¬  ( 𝑋  ∈  ( Vtx ‘ 𝐺 )  ∧  0  ∈  ℕ0 )  →  ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 )  =  ∅ ) | 
						
							| 14 | 12 13 | pm2.61i | ⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 )  =  ∅ |