Metamath Proof Explorer


Theorem clwwlk0on0

Description: There is no word over the set of vertices representing a closed walk on vertex X of length 0 in a graph G . (Contributed by AV, 17-Feb-2022) (Revised by AV, 25-Feb-2022)

Ref Expression
Assertion clwwlk0on0 ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) = ∅

Proof

Step Hyp Ref Expression
1 eqeq2 ( 𝑣 = 𝑋 → ( ( 𝑤 ‘ 0 ) = 𝑣 ↔ ( 𝑤 ‘ 0 ) = 𝑋 ) )
2 1 rabbidv ( 𝑣 = 𝑋 → { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } = { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } )
3 oveq1 ( 𝑛 = 0 → ( 𝑛 ClWWalksN 𝐺 ) = ( 0 ClWWalksN 𝐺 ) )
4 clwwlkn0 ( 0 ClWWalksN 𝐺 ) = ∅
5 3 4 eqtrdi ( 𝑛 = 0 → ( 𝑛 ClWWalksN 𝐺 ) = ∅ )
6 5 rabeqdv ( 𝑛 = 0 → { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } = { 𝑤 ∈ ∅ ∣ ( 𝑤 ‘ 0 ) = 𝑋 } )
7 clwwlknonmpo ( ClWWalksNOn ‘ 𝐺 ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } )
8 0ex ∅ ∈ V
9 8 rabex { 𝑤 ∈ ∅ ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∈ V
10 2 6 7 9 ovmpo ( ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 0 ∈ ℕ0 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) = { 𝑤 ∈ ∅ ∣ ( 𝑤 ‘ 0 ) = 𝑋 } )
11 rab0 { 𝑤 ∈ ∅ ∣ ( 𝑤 ‘ 0 ) = 𝑋 } = ∅
12 10 11 eqtrdi ( ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 0 ∈ ℕ0 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) = ∅ )
13 7 mpondm0 ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 0 ∈ ℕ0 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) = ∅ )
14 12 13 pm2.61i ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) = ∅